Section 12.3 The Dot Product

Problem (12.3.8) For $\mathbf{v}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right\rangle, \mathbf{u}=\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{3}}\right\rangle$ find
a) $\mathbf{v} \cdot \mathbf{u},|\mathbf{v}|$, and $|\mathbf{u}|$,
b) the cosine of the angle between \mathbf{u} and \mathbf{v},
c) the scalar component of \mathbf{u} in the direction of \mathbf{v},
d) the vector $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{u} & =\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right\rangle \cdot\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{3}}\right\rangle=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} \\
|\mathbf{v}| & =\sqrt{\frac{1}{2}+\frac{1}{3}}=\sqrt{\frac{5}{6}} \\
|\mathbf{u}| & =\sqrt{\frac{1}{2}+\frac{1}{3}}=\sqrt{\frac{5}{6}} \\
\cos \theta & =\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u} \| \mathbf{v}|}=\frac{1}{6} \sqrt{\frac{6}{5}} \sqrt{\frac{6}{5}}=\frac{1}{5}
\end{aligned}
$$

scalar component of \mathbf{u} in the direction of $\mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}=\frac{1}{6} \sqrt{\frac{6}{5}}=\frac{1}{\sqrt{30}}$

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\left(\frac{1}{6} \times \frac{6}{5}\right)\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right\rangle=\left\langle\frac{1}{5 \sqrt{2}}, \frac{1}{5 \sqrt{3}}\right\rangle
$$

Problem (12.3.18) Write $\mathbf{u}=\mathbf{j}+\mathbf{k}$ as a sum of vector parallel and a vector orthogonal to $\mathbf{v}=\mathbf{i}+\mathbf{j}$.

$$
\begin{array}{ll}
\mathbf{u}=\mathbf{j}+\mathbf{k}=\langle 0,1,1\rangle, & |\mathbf{u}|=\sqrt{2} \\
\mathbf{v}=\mathbf{i}+\mathbf{j}=\langle 1,1,0\rangle, & |\mathbf{v}|=\sqrt{2}
\end{array}
$$

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =1 \\
\text { parallel } & =\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=\left(\frac{1}{2}\right)\langle 1,1,0\rangle=\left\langle\frac{1}{2}, \frac{1}{2}, 0\right\rangle \\
\text { orthogonal } & =\mathbf{u}-\left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}=\langle 0,1,1\rangle-\left(\frac{1}{2}\right)\langle 1,1,0\rangle=\left\langle-\frac{1}{2}, \frac{1}{2}, 1\right\rangle
\end{aligned}
$$

There are some nice plots of what this means in the associated Mathematica file.
Problem (12.3.22) Suppose $A B$ is the diameter of a circle with center O and that C is a point on one the two arcs joining A and B. Show $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are orthogonal.

If we can show that $\overrightarrow{C A} \cdot \overrightarrow{C B}=0$, then the two vectors are orthogonal since their dot product is zero.
From the diagram, we have

$$
\begin{aligned}
\mathbf{v}+\overrightarrow{C A}=-\mathbf{u} & \Rightarrow \overrightarrow{C A}=-\mathbf{v}-\mathbf{u} \\
\mathbf{v}+\overrightarrow{C B}=-\mathbf{v} & \Rightarrow \overrightarrow{C B}=-\mathbf{v}+\mathbf{u} \\
\overrightarrow{C A} \cdot \overrightarrow{C B} & =(-\mathbf{v}-\mathbf{u}) \cdot(-\mathbf{v}+\mathbf{u}) \\
& =\mathbf{v} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}-\mathbf{u} \cdot \mathbf{u} \\
& =|\mathbf{v}|^{2}+\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}-|\mathbf{u}|^{2} \\
& =|\mathbf{v}|^{2}-|\mathbf{u}|^{2}=0 \text { since the length of } \mathbf{v} \text { is the same as the length of } \mathbf{u}
\end{aligned}
$$

Since the dot product is zero, the vectors are orthogonal.
Problem (12.3.32) If $\mathbf{u} \cdot \mathbf{v}_{1}=\mathbf{u} \cdot \mathbf{v}_{2}$ and $\mathbf{u} \neq \mathbf{0}$, can you conclude that $\mathbf{v}_{1}=\mathbf{v}_{2}$? Give reasons for your answer.
The MMA file contains a numerical counter example. Here is another solution.
If we are given $\mathbf{u} \cdot \mathbf{v}_{1}=\mathbf{u} \cdot \mathbf{v}_{2}$, then we have $\mathbf{u} \cdot\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)=0$. This tells us that \mathbf{u} is perpendicular to $\mathbf{v}_{1}-\mathbf{v}_{2}$ (since the dot product is zero). That is all that we get-there is no condition that $\mathbf{v}_{1}-\mathbf{v}_{2}$ must equal zero.
Problem (12.3.48) Find the acute angle between the lines $y=\sqrt{3} x-1$ and $y=-\sqrt{3} x+2$.

Hints:

Line perpendicular to a vector in \mathbb{R}^{2} : The vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ is perpendicular to the line $a x+b y=c$.
Line parallel to a vector in \mathbb{R}^{2} : The vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ is parallel to the line $b x-a y=c$.
We only need to use one of the hints. Let's use the one about parallel lines. Sketch of the situation:
Sketch of

$$
\begin{aligned}
& \text { Intersection: } \\
& \qquad \sqrt{3} x-1=-\sqrt{3} x+2 \Rightarrow x=\frac{\sqrt{3}}{2} \\
& y=\sqrt{3}\left(\frac{\sqrt{3}}{2}\right)-1=\frac{1}{2}
\end{aligned}
$$

Let $v_{1}=\langle-1, \sqrt{3}\rangle$ and $v_{2}=\langle 1, \sqrt{3}\rangle$. Then

$$
\begin{aligned}
& \left|v_{1}\right|=\left|v_{2}\right|=2 \\
& v_{1} \cdot v_{2}=-1+3=2 \\
& \theta=\arccos \left(\frac{v_{1} \cdot v_{2}}{\left|v_{1}\right|\left|v_{2}\right|}\right)=\arccos \left(\frac{2}{4}\right)=\arccos \left(\frac{2}{4}\right)=\frac{\pi}{3} \\
& \cos \theta=\frac{1}{2}=\frac{a_{j}}{n y p} \\
& \Rightarrow \sqrt{3} \quad \begin{array}{l}
\text { the special triangles } \\
\text { (start with equilateral) }
\end{array}
\end{aligned}
$$

