Section 12.1 Three Dimensional Coordinate System

Problem (12.1.34) Write an inequality that describes the closed region bounded by the spheres of radius 1 and radius 2 centered at the origin.
A sphere of radius r centered at the origin is given by $x^{2}+y^{2}+z^{2}=r^{2}$. So the region we want is described by $x^{2}+y^{2}+z^{2} \geq 1$ and $x^{2}+y^{2}+z^{2} \leq 4$, which we can combine as

$$
1 \leq x^{2}+y^{2}+z^{2} \leq 4
$$

For a sketch see the associated Mathematica file.
Problem (12.1.52) Find the center and radius of the sphere $3 x^{2}+3 y^{2}+3 z^{2}+2 y-2 z=9$.
We answer this question by completing the square in the three variables, and then writing the equation in the form $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$.

The variable x is already in the proper form.

$$
\begin{aligned}
3 y^{2}+2 y & =3\left(y^{2}+\frac{2}{3} y\right) \\
& =3\left(y^{2}+\frac{2}{3} y+\frac{1}{9}-\frac{1}{9}\right) \\
& =3\left(y+\frac{1}{3}\right)^{2}-\frac{1}{3} \\
3 z^{2}-2 z & =3\left(y^{2}-\frac{2}{3} y\right) \\
& =3\left(y^{2}+\frac{2}{3} y-\frac{1}{9}-\frac{1}{9}\right) \\
& =3\left(y-\frac{1}{3}\right)^{2}-\frac{1}{3} \\
3 x^{2}+3 y^{2}+3 z^{2}+2 y-2 z & =9 \\
3 x^{2}+3\left(y+\frac{1}{3}\right)^{2}-\frac{1}{3}+3\left(y-\frac{1}{3}\right)^{2}-\frac{1}{3} & =9 \\
x^{2}+\left(y+\frac{1}{3}\right)^{2}+\left(y-\frac{1}{3}\right)^{2} & =3+\frac{2}{9}=\frac{29}{9}
\end{aligned}
$$

So this is a circle of radius $\sqrt{29} / 3$ centered at $(0,-1 / 3,1 / 3)$.
Sketch in the Mathematica file.

Problem (12.1.53) Find a formula for the distance from the point $P(x, y, z)$ to the x-axis, the y-axis, and the z-axis.

Problem (12.1.54) Find a formula for the distance from the point $P(x, y, z)$ to the $x y$-plane, the $y z$-plane, and the $x z$-plane.

The distances are $|z|,|x|$, and $|y|$.

