Integral Formulas

We learned a lot of integral formulas in this class. I've collected the most important ones here along with a little sketch to help you remember where they came from, and also to help you remember them.
You shouldn't try to memorize these-you should verify that you can reproduce them. The forms listed here are not meant to be exhaustive, simply representative.
For explicit functions, I am assuming $y=f(x), a \leq x \leq b$.
For parametric functions, I am assuming $x=f(t), y=g(t), \alpha \leq t \leq \beta$. The endpoints satisfy $f(\alpha)=a$ and $f(\beta)=b$ from the explicit representation.

Area Under a Curve

Explicit: $A=\int_{a}^{b} f(x) d x \quad$ Parametric: $A=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t$.

Arc Length

$(d s)^{2}=(d x)^{2}+(d y)^{2}$
Explicit: $L=\int_{a}^{b} d s, \quad d s=\sqrt{1+f^{\prime}(x)^{2}} d x=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.
Parametric: $L=\int_{\alpha}^{\beta} d s, \quad d s=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.

Volume of Revolution by Washers

Note: The washer has side of length $d x$. The radius of the washer is y. The volume of the washer is $\pi y^{2} d x$. Adding up all the washers leads to the integral.

$$
\begin{aligned}
\text { Explicit: } & V=\int_{a}^{b} \pi f(x)^{2} d x \\
\text { Parametric: } & V=\int_{\alpha}^{\beta} \pi g(t)^{2} f^{\prime}(t) d t .
\end{aligned}
$$

Surface Area of Revolution

Note: The frustum has side of length $d s$. The radius of the circle is y. The surface area of the frustum (excluding circular faces) is approximately $2 \pi y d s$. Adding up all the frustums leads to the integral.

$$
\begin{gathered}
\text { Explicit: } \quad S=\int_{a}^{b} 2 \pi f(x) d s, d s=\sqrt{1+f^{\prime}(x)^{2}} d x=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x . \\
\text { Parametric: }
\end{gathered} \quad S=\int_{\alpha}^{\beta} 2 \pi g(t) d s, d s=\sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Volume of Revolution about y-axis by Washers

This is a more complicated problem that shows how to build the integral for volume of revolution. We want to rotate the shaded region about the y-axis.

We construct washers, which will now have an inner and an outer radius.

Note: The washer has side of height $d y$. The inner radius of the washer is a. The outer radius of the washer is x. The volume of the washer is $\pi\left(x^{2}-a^{2}\right) d y$. Adding up all the washers leads to the integral.

$$
\text { Explicit: } \quad V=\int_{c}^{d} \pi\left(x^{2}-a^{2}\right) d y
$$

We have to solve $y=f(x)$ for $x=g(y)$, and then we have $c=g(a), d=g(b)$, and the volume of revolution is

$$
\text { Explicit: } \quad V=\int_{c}^{d} \pi\left(g^{2}(y)-a^{2}\right) d y
$$

This example shows why we don't want to memorize formulas, since the formula can be different depending on what axis you rotate around.

