Example: convergence Find the interval of convergence of $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{n 2^{n}}$.
Here, we use the ratio test to determine the radius of convergence first. $a_{n}=(-1)^{n} \frac{(x+2)^{n}}{n 2^{n}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|(-1)^{n+1} \frac{(x+2)^{n+1}}{(n+1) 2^{n+1}} \times(-1)^{n} \frac{n 2^{n}}{(x+2)^{n}}\right| \\
& =\frac{1}{2}|x+2| \lim _{n \rightarrow \infty}\left|\frac{n}{(n+1)}\right| \\
& =\frac{1}{2}|x+2| \lim _{n \rightarrow \infty}\left|\frac{1}{(1+1 / n)}\right| \\
& =\frac{1}{2}|x+2|
\end{aligned}
$$

If this is less than 1 , the series converges, so the series converges if $|x+2|<2$.
This is the same as the interval $-4<x<0$, since the center is $a=-2$ and the radius of convergence is $R=2$.
We need to check endpoints individually, since the ratio test tells us nothing there.

Consider $x=-4: \sum_{n=1}^{\infty}(-1)^{n} \frac{(-4+2)^{n}}{n 2^{n}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{(-2)^{n}}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$
This is the divergent harmonic series.

Consider $x=0: \sum_{n=1}^{\infty}(-1)^{n} \frac{(+2)^{n}}{n 2^{n}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$
This is an alternating series, with $b_{n}=\frac{1}{n}$. It is convergent since $b_{n+1}=\frac{1}{n+1}<\frac{1}{n}=b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$.
So the interval of convergence for $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+2)^{n}}{n 2^{n}}$ is $-4<x \leq 1$.
Example: Taylor Series Find the Taylor series of $f(x)=\ln x$ about $x=1 / 2$. What is the radius of convergence?
You could use a table and look for a pattern to answer this question, but instead I am going to make this look like a geometric series.

$$
\begin{aligned}
\frac{d}{d x} \ln x & =\frac{1}{x} \\
& =\frac{1}{1 / 2-(1 / 2-x)} \\
& =\frac{2}{1-(1-2 x)} \\
& =2 \sum_{n=0}^{\infty}(1-2 x)^{n}, \quad|1-2 x|<1 \quad \text { using geometric series result }
\end{aligned}
$$

$$
\begin{aligned}
\ln x= & 2 \sum_{n=0}^{\infty} \int(1-2 x)^{n} d x, \quad|x-1 / 2|<1 / 2 \\
& \text { Substitution: } w=1-2 x, d w=-2 d x \\
= & -\sum_{n=0}^{\infty} \int w^{n} d w, \quad|x-1 / 2|<1 / 2 \\
= & -\sum_{n=0}^{\infty} \frac{w^{n+1}}{n+1}+c, \quad|x-1 / 2|<1 / 2 \\
= & -\sum_{n=0}^{\infty} \frac{(1-2 x)^{n+1}}{n+1}+c, \quad|x-1 / 2|<1 / 2
\end{aligned}
$$

If we evaluate this at $x=1 / 2$ we can determine the value of c.

$$
\begin{aligned}
\ln (1 / 2) & =+c \\
\ln x & =-\sum_{n=0}^{\infty} \frac{(1-2 x)^{n+1}}{n+1}+\ln (1 / 2), \quad|x-1 / 2|<1 / 2 \\
& =-\ln 2-\sum_{n=0}^{\infty} \frac{(1-2 x)^{n+1}}{n+1}, \quad|x-1 / 2|<1 / 2
\end{aligned}
$$

The radius of convergence is $1 / 2$.
Example: Integral test Show the following series is divergent using the integral test. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$.
The integral test requires that we work with $f(x)$, where

1) $f(n)=a_{n}$,
and on the interval $[1, \infty), f(x)$ is:
2) continuous,
3) positive,
4) decreasing.

Here, $f(x)=\frac{\ln x}{x}$, which is continuous and positive on the interval $[1, \infty)$.
But is it decreasing on this interval? It is not obvious, since both the numerator and denominator are increasing functions of x.

However, if a function $f(x)$ is decreasing, then it must be true that $f^{\prime}(x)<0$. Let's take the derivative of $f(x)$ and see what we can learn.

$$
\frac{d}{d x} f(x)=\frac{d}{d x} \frac{\ln x}{x}=\frac{1-\ln x}{x^{2}}
$$

For this to be less than zero, we require $1-\ln x<0 \longrightarrow x>e$. This will certainly be true if $x>3$, since $e \sim 2.71828$.
We can therefore apply the integral test to the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$. Note that we start at $n=3$ and not $n=1$, since we must
work on the interval $[3, \infty)$.

$$
\begin{aligned}
\int_{3}^{\infty} f(x) d x= & \int_{3}^{\infty} \frac{\ln x}{x} d x \\
= & \lim _{t \rightarrow \infty} \int_{3}^{t} \frac{\ln x}{x} d x \\
& \text { Substitution: } \begin{array}{l}
u=\ln x \quad \text { when } x=3, u=\ln 3 \\
d u=\frac{1}{x} d x \quad \text { when } x=t, u=\ln t
\end{array} \\
= & \lim _{t \rightarrow \infty} \int_{\ln 3}^{\ln t} u d u \\
= & \left.\frac{1}{2} \lim _{t \rightarrow \infty} u^{2}\right|_{\ln 3} ^{\ln t} \\
= & \frac{1}{2} \lim _{t \rightarrow \infty}\left(\ln ^{2} t-\ln ^{2} 3\right) \\
= & \infty, \quad \operatorname{diverges}, \operatorname{since}^{2} \ln ^{2} t \rightarrow \infty \text { as } t \rightarrow \infty .
\end{aligned}
$$

Since the integral diverges, the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ diverges by the integral test. Therefore, the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverges.

