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Example: convergence Find the interval of convergence of Z(—l)"(m%)
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Here, we use the ratio test to determine the radius of convergence first. a, = (—1) —on
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If this is less than 1, the series converges, so the series converges if |z + 2| < 2.
This is the same as the interval —4 < x < 0, since the center is a = —2 and the radius of convergence is R = 2.

We need to check endpoints individually, since the ratio test tells us nothing there.
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Consider z = —4: Z(_l)”% _ Z(—l)"(_2)n _ Z
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This is the divergent harmonic series.
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Consider z = 0: Z(—l)" (+2)" = Z(—l)"
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This is an alternating series, with b, = 1L It is convergent since b, 1 = n%_l < % = b, and lim,,_, . b, = 0.
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So the interval of convergence for E (—1)"T
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is 4<z<1.

Example: Taylor Series Find the Taylor series of f(x) = Inz about = 1/2. What is the radius of convergence?

You could use a table and look for a pattern to answer this question, but instead I am going to make this look like a
geometric series.
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= 2 Z(l —2z)", |1 —2z| <1 using geometric series result
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Inz = 22/(1—233)%35, |z —1/2| < 1/2
n=0

Substitution: w =1 — 2z, dw = —2 dx
— —Z/w”dw, lv —1/2] < 1/2
n=0
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If we evaluate this at © = 1/2 we can determine the value of c.

In(1/2) = +c
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The radius of convergence is 1/2.

oo
1
Example: Integral test Show the following series is divergent using the integral test. E an
n
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The integral test requires that we work with f(x), where
1) f(n) = an,

and on the interval [1,00), f(z) is:

1) continuous,

2) positive,

3) decreasing.

Inz
Here, f(x) = ——, which is continuous and positive on the interval [1, c0).
x

But is it decreasing on this interval? It is not obvious, since both the numerator and denominator are increasing functions
of z.

However, if a function f(x) is decreasing, then it must be true that f’(z) < 0. Let’s take the derivative of f(z) and see
what we can learn.
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For this to be less than zero, we require 1 —Inx < 0 — z > e. This will certainly be true if z > 3, since e ~ 2.71828.
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We can therefore apply the integral test to the series E ——. Note that we start at n = 3 and not n = 1, since we must
n
n=3
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work on the interval [3, 00).
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o u=Inx when x = 3,u =1n3
Substitution: du = %dm when z =t,u = Int
Int
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= oo, diverges, since In“t — 0o as t — oo.
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Since the integral diverges, the series E —— diverges by the integral test. Therefore, the series E —— diverges.
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