Example: Probability Distributions Find the value of A which makes

$$
f(x)= \begin{cases}0 & x>1 \\ A & 0 \leq x \leq 1 \\ A e^{\pi x} & x<0\end{cases}
$$

a probability density function. Calculate the mean value of this probability density function.
NOTE: although this problem is longer than what I would typically give on a final exam, it is not more difficult than the types of problems I might give.

Since $f(x) \geq 0$ for all x, all we need to do to show this is a probability density function is calculate $\int_{-\infty}^{\infty} f(x) d x$ and choose the value of A which makes this equal to 1 .

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{0} f(x) d x+\int_{0}^{1} f(x) d x+\int_{1}^{\infty} f(x) d x \quad \text { since our function is piece-wise defined } \\
& =\int_{-\infty}^{0} A e^{\pi x} d x+\int_{0}^{1} A d x+\int_{1}^{\infty} 0 d x \\
& =A \lim _{a \rightarrow-\infty} \int_{a}^{0} e^{\pi x} d x+A+0 \quad \text { Substitution: } \begin{array}{l}
u=\pi x \quad x=a \rightarrow u=\pi a \\
d u=\pi d x \quad x=0 \rightarrow u=0 \\
\\
\end{array} A_{a \rightarrow A \lim _{a \rightarrow-\infty} \frac{1}{\pi} \int_{\pi a}^{0} e^{u} d u}=A+\left.\frac{A}{\pi} \lim _{a \rightarrow-\infty} e^{u}\right|_{\pi a} ^{0} \\
& =A+\frac{A}{\pi} \lim _{a \rightarrow-\infty}\left(1-e^{\pi a}\right) \\
& =A+\frac{A}{\pi}(1-0) \\
& =A+\frac{A}{\pi}
\end{aligned}
$$

We set this equal to one (which means we are forcing $\int_{-\infty}^{\infty} f(x) d x=1$) and solve for A :

$$
A+\frac{A}{\pi}=1 \longrightarrow A=\frac{\pi}{1+\pi}
$$

To calculate the mean we need to calculate (I'll substitute for A at the end):

$$
\begin{aligned}
\mu=\int_{-\infty}^{\infty} x f(x) d x & =\int_{-\infty}^{0} x f(x) d x+\int_{0}^{1} x f(x) d x+\int_{1}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{0} A x e^{\pi x} d x+\int_{0}^{1} A x d x+\int_{1}^{\infty} x \cdot 0 d x \\
& =A \lim _{a \rightarrow-\infty} \int_{a}^{0} x e^{\pi x} d x+\left.A \frac{x^{2}}{2}\right|_{0} ^{1}+0 \\
& =\frac{A}{2}+A \lim _{a \rightarrow-\infty} \int_{a}^{0} x e^{\pi x} d x
\end{aligned}
$$

Use parts to do the integral $\int x e^{\pi x} d x$:

$$
\begin{array}{ll}
u=x & d v=e^{\pi x} d x \\
d u=d x & v=\int e^{\pi x} d x=\frac{1}{\pi} e^{\pi x}
\end{array}
$$

$$
\begin{aligned}
\int x e^{\pi x} d x & =\int u d v \\
& =u v-\int v d u \\
& =\frac{x}{\pi} e^{\pi x}-\int \frac{1}{\pi} e^{\pi x} d x \\
& =\frac{x}{\pi} e^{\pi x}-\frac{1}{\pi^{2}} e^{\pi x}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\frac{A}{2}+A_{a \rightarrow-\infty} \int_{a}^{0} x e^{\pi x} d x \\
& =\frac{A}{2}+A \lim _{a \rightarrow-\infty}\left(\frac{x}{\pi} e^{\pi x}-\frac{1}{\pi^{2}} e^{\pi x}\right)_{a}^{0} \\
& =\frac{A}{2}+A \lim _{a \rightarrow-\infty}\left[\left(0-\frac{1}{\pi^{2}}\right)-\left(\frac{a}{\pi} e^{\pi a}-\frac{1}{\pi^{2}} e^{\pi a}\right)\right] \\
& =\frac{A}{2}-A \lim _{a \rightarrow-\infty} \frac{1}{\pi^{2}}-A \lim _{a \rightarrow-\infty} \frac{a}{\pi} e^{\pi a}+A \lim _{a \rightarrow-\infty} \frac{1}{\pi^{2}} e^{\pi a} \\
& =\frac{A}{2}-\frac{A}{\pi^{2}}-A \lim _{a \rightarrow-\infty} \frac{a}{\pi} e^{\pi a}+A \cdot 0 \\
& =\frac{A}{2}-\frac{A}{\pi^{2}}-A \lim _{a \rightarrow-\infty} \frac{a}{\pi} e^{\pi a}
\end{aligned}
$$

To evaluate this last limit, we need to look at it more closely:

$$
\begin{aligned}
\lim _{a \rightarrow-\infty} \frac{a}{\pi} e^{\pi a} & \rightarrow(-\infty) \cdot(0) \quad \text { indeterminate product } \\
& =\frac{1}{\pi} \lim _{a \rightarrow-\infty} \frac{a}{e^{-\pi a}} \rightarrow \frac{-\infty}{\infty} \quad \text { indeterminate quotient, so use L'Hospital's Rule } \\
& =\frac{1}{\pi} \lim _{a \rightarrow-\infty} \frac{\frac{d}{d a} a}{\frac{d}{d a} e^{-\pi a}} \\
& =\frac{1}{\pi} \lim _{a \rightarrow-\infty} \frac{1}{(-\pi) e^{-\pi a}} \\
& =-\frac{1}{\pi^{2}} \lim _{a \rightarrow-\infty} \frac{1}{e^{-\pi a}} \\
& =-\frac{1}{\pi^{2}} \lim _{a \rightarrow-\infty} e^{\pi a} \\
& =-\frac{1}{\pi^{2}}(0) \\
& =0
\end{aligned}
$$

So the mean for the probability distribution is

$$
\mu=\frac{A}{2}-\frac{A}{\pi^{2}}=A\left(\frac{1}{2}-\frac{1}{\pi^{2}}\right)=\frac{\pi}{1+\pi}\left(\frac{1}{2}-\frac{1}{\pi^{2}}\right)
$$

Example: Orthogonal Trajectories Find the orthogonal trajectories to the family of curves

$$
y=\frac{k}{1+x^{2}}
$$

The differential equation satisfied by the original family of curves is found by differentiating:

$$
\begin{aligned}
y & =\frac{k}{1+x^{2}} \\
\frac{d}{d x}(y & \left.=\frac{k}{1+x^{2}}\right) \\
\frac{d y}{d x} & =k \frac{d}{d x}\left(\frac{1}{1+x^{2}}\right) \\
& =-k\left(1+x^{2}\right)^{-2}(2 x) \\
& =-2 x k \frac{1}{\left(1+x^{2}\right)^{2}} \quad \text { use the original equation to eliminate } k \\
& =-2 x\left(y\left(1+x^{2}\right)\right) \frac{1}{\left(1+x^{2}\right)^{2}} \\
\frac{d y}{d x} & =-\frac{2 x y}{\left(1+x^{2}\right)}
\end{aligned}
$$

The differential equation satisfied by the orthogonal trajectories is therefore given by (derivatives must be negative reciprocals):

$$
\begin{aligned}
-\frac{d x}{d y} & =-\frac{2 x y}{\left(1+x^{2}\right)} \\
\frac{\left(1+x^{2}\right)}{x} d x & =2 y d y \quad \text { (separate) } \\
\int \frac{\left(1+x^{2}\right)}{x} d x & =\int 2 y d y \quad \text { (integrate) } \\
\int \frac{1}{x} d x+\int x d x & =\int 2 y d y \\
\ln |x|+\frac{x^{2}}{2}+c_{1} & =y^{2}+c_{2} \\
\ln |x|+\frac{x^{2}}{2} & =y^{2}+c \quad\left(c=c_{2}-c_{1}\right)
\end{aligned}
$$

The orthogonal trajectories are given implicitly by the equation $\ln |x|+\frac{x^{2}}{2}=y^{2}+c$, where c is a constant.

Example: Orthogonal Trajectories Find the orthogonal trajectories to the family of curves

$$
y^{2}=\frac{k}{1+x}
$$

The differential equation satisfied by the original family of curves is found by differentiating:

$$
\begin{aligned}
y^{2} & =\frac{k}{1+x} \\
\frac{d}{d x}\left(y^{2}\right. & \left.=\frac{k}{1+x}\right) \\
2 y \frac{d y}{d x} & =k \frac{d}{d x}\left(\frac{1}{1+x}\right) \\
& =-k(1+x)^{-2} \\
& =-k \frac{1}{(1+x)^{2}} \quad \text { use the original equation to eliminate } k \\
& =-\left(y^{2}(1+x)\right) \frac{1}{(1+x)^{2}} \\
\frac{d y}{d x} & =-\frac{y}{2(1+x)}
\end{aligned}
$$

The differential equation satisfied by the orthogonal trajectories is therefore given by (derivatives must be negative reciprocals):

$$
\begin{aligned}
-\frac{d x}{d y} & =-\frac{y}{2(1+x)} \\
(1+x) d x & =\frac{1}{2} y d y \quad \text { (separate) } \\
\int(1+x) d x & =\int \frac{1}{2} y d y \quad \text { (integrate) } \\
x+\frac{x^{2}}{2}+c_{1} & =\frac{y^{2}}{4}+c_{2} \\
x+\frac{x^{2}}{2} & =\frac{y^{2}}{4}+c \quad\left(x=c_{2}-c_{1}\right)
\end{aligned}
$$

The orthogonal trajectories are given implicitly by the equation $x+\frac{x^{2}}{2}=\frac{y^{2}}{4}+c$, where c is a constant.

