
Math 1102 Calculus II Final Review Examples from Lecture Page 1

The techniques of integration are important, and can show up in other types of problems. For example,
maybe to calculate the surface area of a solid you need to do an integral that requires you to use some trig
identities. And to get the mean value of a probability distribution frequently requires the use of parts.

Example: Trig Substitution Evaluate the integral using the substitution x = 2 sec θ.

∫
(x2 − 4)3/2

x6
dx.

Although this doesn’t have an obvious square root, which is what usually tips us off to try a trig substitution,
we have been told that a trig substitution will work. So let’s proceed.

x = 2 sec θ

dx = 2 sec θ tan θ dθ

where 0 < θ <
π

2
or π < θ <

3π

2

Now, we find expressions for the components of the integrand:

(x2 − 4)3/2 = (4 sec2 θ − 4)3/2

= 23(sec2 θ − 1)3/2

= 23(tan2 θ)3/2

= 23| tan θ|3
= 23 tan3 θ (since tan θ > 0 in our restricted domain for θ!)

x6 = 26 sec6 θ

And now we do the integral:

∫
(x2 − 4)3/2

x6
dx =

∫
(23 tan3 θ)
(26 sec6 θ)

(2 sec θ tan θ dθ)

=
1
22

∫
tan4 θ

sec5 θ
dθ

=
1
4

∫
sin4 θ

cos4 θ
cos5 θ dθ

=
1
4

∫
sin4 θ cos θ dθ Substitution:

u = sin θ
du = cos θ dθ

=
1
4

∫
u4 du

=
1
4

(
u5

5

)
+ C

=
1
20

sin5 θ + C

We now need to back substitute for θ. Construct the diagram that will help us back substitute the θ:

sec θ =
x

2
−→ cos θ =

2
x
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x

2

√
x2 − 4

θ

sin θ =
√

x2 − 4
x

∫
(x2 − 4)3/2

x6
dx =

1
20

(√
x2 − 4

x

)5

+ C =
(x2 − 4)5/2

20x5
+ C.

Example: Separable Differential Equation Solve the initial value problem given below for y(x).

x + 2y
√

x2 + 1
dy

dx
= 0, y(0) = 1.

x + 2y
√

x2 + 1
dy

dx
= 0

2y dy = − x√
x2 + 1

dx (separate)
∫

2y dy = −
∫

x√
x2 + 1

dx (integrate)

y2 + c1 = −
∫

x√
x2 + 1

dx Substitute:
u = x2 + 1
du = 2x dx

y2 + c1 = −
∫

1
2
√

u
du

y2 + c1 = −1
2

∫
u−1/2 du

y2 + c1 = −1
2

u1/2

1/2
+ c2

y2 = −
√

x2 + 1 + c, c = c2 − c1

The above is an implicit solution to the differential equation. It is a family of curves.

Now we must use the initial condition to determine the constant c. This will pick the curve that passes
through the point (x0, y0) = (0, 1) out from the family of curves.

12 = −
√

02 + 1 + c

c = 2

So the solution to the initial value problem is

y2 = −
√

x2 + 1 + 2.

You can check that this is correct by taking an implicit derivative.
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Example: Arc Length Set up, but do not evaluate, an integral for the length of the ellipse

x2

a2
+

y2

b2
= 1, a, b constants.

The function is an ellipse, which I have sketched below.

-a a
x

-b

b

y

-a a
x

b
y

We can work with the top half of the ellipse, and get 1/2 of the arc length. If we do this, we can work with
the explicit function

y = b

√
1− x2

a2
= b

(
1− x2

a2

)1/2

.

Arc Length =
∫

ds

ds =

√
1 +

(
dy

dx

)2

dx

dy

dx
= b

(
1
2

)(
1− x2

a2

)−1/2 (
−2

x

a2

)

=
−bx/a2

√
1− x2/a2

1 +
(

dy

dx

)2

= 1 +
b2x2/a4

1− x2/a2

Arc Length of ellipse = 2
∫ a

−a

√
1 +

b2x2/a4

1− x2/a2
dx

This solution is fine, but cumbersome. For example, to check if the solution is correct you may want to
verify that it gives the circumference of a circle of radius r (a = b = r) to be 2πr. You would need to do a
trig substitution to verify this, so it is not the sort of check you would probably do. In fact, there is no nice
way of checking this.
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Another solution would be to work with the parametric expression for the ellipse:

x = a cos t

y = b sin t

0 ≤ t ≤ 2π

This will sweep out the entire ellipse.

Arc Length =
∫

ds

ds =

√(
dx

dt

)2

+
(

dy

dt

)2

dt

dx

dt
= −a sin t

dy

dt
= b cos t

√(
dx

dt

)2

+
(

dy

dt

)2

=
√

a2sin2t + b2 cos2 t

Arc Length of ellipse =
∫ 2π

0

√
a2sin2t + b2 cos2 t dt

From this representation it is very easy to see that the circumference of a circle of radius r (a = b = r) is
2πr.


