Definition of Convergence A sequence $\{a_n\}$ has the limit L and we write $\lim_{n \to \infty} a_n = L$ if for every $\epsilon > 0$ there is a corresponding integer N such that $|a_n - L| < \epsilon$ whenever n > N. If $\lim_{n \to \infty} a_n$ exists, the sequence converges. Otherwise, it diverges.

Here is a sketch of what this is saying:

If we decrease the size of ϵ , we would have to increase the size of N to have $L - \epsilon < a_n < L + \epsilon$.

If we can do this for all $\epsilon > 0$, then we would say that the sequence $\{a_n\}$ has limit L, $\lim_{n \to \infty} a_n = L$.

If there was some $\epsilon > 0$ for which we could not do this, then we say the sequence $\{a_n\}$ is divergent.

Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

Proof. To show a sequence is is convergent, we must show that

for every $\epsilon > 0$ there is a corresponding integer N such that $|a_n - L| < \epsilon$ whenever n > N.

So our goal in this proof is to start with an unspecified increasing, bounded sequence and construct a series of steps that ends with the boxed statement above.

Assume $\{a_n\}$ is an increasing, bounded sequence.

Since $\{a_n\}$ is bounded, it has a Least Upper Bound L. We can draw a sketch that implies this fact, but our sketch can't be entirely accurate since we can't draw the entire infinite sequence in the sketch. So from the sketch it might <u>look</u> like you could find a number slightly smaller that L which would also be an upper bound, but that really isn't the case.

Therefore, if $\epsilon > 0$, $L - \epsilon$ is <u>not</u> an upper bound.

Therefore, $a_N > L - \epsilon$ for some integer N.

Since the sequence is increasing, $a_n > a_N$ for every n > N.

```
 \begin{array}{ll} \text{Therefore} & a_n > a_N > L-\epsilon, \quad n > N \\ & a_n > L-\epsilon, \quad n > N \\ & a_n > L-\epsilon, \quad n > N \\ \text{Rearranging} & \epsilon > L-a_n, \quad n > N \\ & L-a_n < \epsilon, \quad n > N \end{array}
```

Since $a_n \leq L$ (*L* is a least upper bound), we have $0 \leq L - a_n < \epsilon$, n > N.

Therefore, $|L - a_n| < \epsilon$, n > N, which means that $\lim_{n \to \infty} a_n = L$ by the formal definition of convergence of a sequence.