Consider the following diagram, which shows squares inscribed inside of themselves. The process can continue on to an infinite number of squares, but of course I can not draw that! (Notice I screwed up the numbering on the right-the numbers should increase going up if the bottom left is the origin)

From the diagram, we can see both a sequence and a series.

- The sequence is the size of the shaded triangles, and is given by

$$
\left\{\frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n}\right\}_{n=1}^{\infty}=\left\{\frac{30^{2}}{4}\left(\frac{1}{2}\right)^{1}, \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{2}, \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{3}, \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{4}, \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{5}, \ldots, \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n}, \ldots\right\}
$$

So $a_{n}=\frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n}$. The limit of the sequence is $\lim _{n \rightarrow \infty} a_{n}=0$ since the $1 / 2$ raised to an infinite power will be zero. This limit represents the fact that the size of the shaded triangles is approaching zero.

- If we add up all the shaded areas, we get a series:

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n}
$$

This is actually a geometric series, so we can get its sum:

$$
\sum_{n=1}^{\infty} \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{30^{2}}{8}\left(\frac{1}{2}\right)^{n-1}=\frac{30^{2}}{8} \times \frac{1}{1-1 / 2}=\frac{30^{2}}{4}
$$

The above equation implies the following:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n} & =\frac{30^{2}}{4} \\
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} & =1
\end{aligned}
$$

which is a pretty sweet result.
We can recover this result another way by looking at the x-axis in our diagram:

- From here, we can see that the sequence for the lengths along the x-axis is given by

$$
\left\{30\left(\frac{1}{2}\right)^{n}\right\}_{n=1}^{\infty}=\left\{30\left(\frac{1}{2}\right)^{1}, 30\left(\frac{1}{2}\right)^{2}, 30\left(\frac{1}{2}\right)^{3}, 30\left(\frac{1}{2}\right)^{4}, 30\left(\frac{1}{2}\right)^{5}, \ldots, 30\left(\frac{1}{2}\right)^{n}, \ldots\right\}
$$

So $a_{n}=30\left(\frac{1}{2}\right)^{n}$. The limit of the sequence is $\lim _{n \rightarrow \infty} a_{n}=0$ since the $1 / 2$ raised to an infinite power will be zero. This limit represents the fact that the length of the interval is approaching zero.

- If we add up all the shaded areas, we get a series:

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} 30\left(\frac{1}{2}\right)^{n}
$$

This is actually a geometric series, so we can get its sum:

$$
\sum_{n=1}^{\infty} 30\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{30}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{30}{2} \times \frac{1}{1-1 / 2}=30
$$

The above equation implies the following:

$$
\begin{aligned}
\sum_{n=1}^{\infty} 30\left(\frac{1}{2}\right)^{n} & =30 \\
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n} & =1
\end{aligned}
$$

which is the same result we found earlier.
Things to note:

- Although the pictures provide good evidence that the series can be summed, they really only provide an upper bound for the sum:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{30^{2}}{4}\left(\frac{1}{2}\right)^{n} \leq \frac{30^{2}}{4} \\
\sum_{n=1}^{\infty} 30\left(\frac{1}{2}\right)^{n} \leq 30
\end{gathered}
$$

Using the geometric series result $\sum_{n=1}^{\infty} r^{n-1}=\frac{1}{1-r}$ when $|r|<1$ means we really used the sequence of partial sums to get the sum-since that was how we got the geometric series formula in the first place!

- This analysis did not require any calculus (in the sense of derivatives or integrals) to perform. However, it does require the understanding of infinity-which is at the heart of both differential and integral calculus. It is the dealing with infinity that connects all these topics.

