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Other solutions than the ones presented here are possible!

Questions

1.

∫
x arcsinx dx

2.

∫ π/4

0

cos2 θ tan2 θ dθ

3.

∫
sin2 x cos3 x dx

4.

∫
sin 4x cos 3x dx

5. (Challenging) The functions y = ex
2

and y = x2ex
2

do not have elementary antiderivatives, but y =

(2x2 + 1)ex
2

does. Evaluate

∫
(2x2 + 1)ex

2

dx.

6. (long)

∫
x

(x− 3)(x2 + 4x+ 5)
dx. This problem is a real test of our organizational abilities!

Solutions

Example 1

∫
x arcsinx dx

Use parts, since part of integrand is x which simplifies when differntiated:

u = x dv = arcsinx dx

du = dx v =

∫
arcsinx dx

Use parts to get v = I =
∫

arcsinx dx. I will reuse u and v for this part. They have no relation to u and v above.

u = arcsinx dv = dx

du =
dx√

1− x2
v = x
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I =

∫
arcsinx dx =

∫
u dv

= uv −
∫
v du (parts)

= x arcsinx−
∫

x√
1− x2

dx Substitution:
t = 1− x2
dt = −2x dx

= x arcsinx+
1

2

∫
dt√
t

= x arcsinx+
1

2

∫
t−1/2dt

= x arcsinx+ t1/2

= x arcsinx+
√

1− x2

So, we have for the first invocation of parts v = x arcsinx+
√

1− x2. To recap what we have,

u = x dv = arcsinx dx

du = dx v = x arcsinx+
√

1− x2

∫
x arcsinx dx =

∫
u dv

= uv −
∫
v du∫

x arcsinx dx = x2 arcsinx+ x
√

1− x2 −
∫
x arcsinx dx−

∫ √
1− x2 dx

The integral we seek appears on both sides of the equation. We can algebraically solve for it:∫
x arcsinx dx =

1

2
(x2 arcsinx+ x

√
1− x2 −

∫ √
1− x2 dx)

Now all we need is the integral
∫ √

1− x2 dx. For this, we should try a trig substitution. Since the integrand
contains

√
a2 − x2, a = 1, we should use the trig substitution:

x = a sin θ = sin θ

dx = cos θ dθ

Now, we find expressions for all the components of the integrand:

√
1− x2 =

√
1− sin2 θ

=
√

cos2 θ

= | cos θ| = cos θ
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And now we do the integral:∫ √
1− x2 dx =

∫
cos θ cos θ dθ

=

∫
cos2 θ dθ (use 1/2-angle trig identity)

=

∫
1

2
(1 + cos 2θ) dθ

=
1

2

∫
dθ +

1

2

∫
cos 2θ dθ Substitution:

s = 2θ
ds = 2dθ

=
1

2
θ +

1

4

∫
cos s ds

=
θ

2
+

1

4
sin s+ C

=
θ

2
+

1

4
sin 2θ + C

=
θ

2
+

1

2
sin θ cos θ + C

We now need to back substitute for θ, to get the final answer in terms of the original variable x. First, construct
the diagram that will help us back substitute the θ:

sin θ =
x

1

�
�

�
�
�

1

√
1− x2

x

θ

sin θ = x, θ = arcsinx, , cos θ =
√

1− x2

∫ √
1− x2 dx =

θ

2
+

1

2
sin θ cos θ + c

=
arcsinx

2
+

1

2
x
√

1− x2 + c

And, finally, we arrive at the result for the original integral:∫
x arcsinx dx =

1

2

(
x2 arcsinx+ x

√
1− x2 −

∫ √
1− x2 dx

)
=

1

2

(
x2 arcsinx+ x

√
1− x2 − arcsinx

2
− 1

2
x
√

1− x2
)

+ C

=
x2 arcsinx

2
− arcsinx

4
+

1

4
x
√

1− x2 + C
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Example 2

∫ π/4

0

cos2 θ tan2 θ dθ

∫ π/4

0

cos2 θ tan2 θ dθ =

∫ π/4

0

cos2 θ
sin2 θ

cos2 θ
dθ

=

∫ π/4

0

sin2 θ dθ

=

∫ π/4

0

1

2
(1− cos 2θ) dθ

=
1

2

∫ π/4

0

dθ − 1

2

∫ π/4

0

cos 2θ dθ Substitution:

u = 2θ
du = 2dθ
θ = 0 −→ u = 0
θ = π/4 −→ u = π/2

=
1

2
θ|π/40 − 1

4

∫ π/2

0

cosu du

=
π

8
− 1

4
sinu|π/20

=
π

8
− 1

4
(sinπ/2− sin 0)

=
π

8
− 1

4

Example 3

∫
sin2 x cos3 x dx

∫
sin2 x cos3 x dx =

∫
sin2 x cosx cos2 x dx

=

∫
sin2 x cosx(1− sin2 x) dx

=

∫
(sin2 x− sin4 x) cosx dx Substitution:

u = sinx
du = cosx dx

=

∫
(u2 − u4)du

=
u3

3
− u5

5
+ C

=
sin3 x

3
− sin5 x

5
+ C

Example 4

∫
sin 4x cos 3x dx

Use the trig identity

sinA cosB =
1

2
[sin(A−B) + sin(A+B)]
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sin 4x cos 3x =
1

2
[sin(4x− 3x) + sin(4x+ 3x)] =

1

2
[sinx+ sin 7x]

∫
sin 4x cos 3x dx =

∫
1

2
[sinx+ sin 7x] dx

= −1

2
cosx+

1

2

∫
sin(7x) dx Substitution:

u = 7x
du = 7 dx

= −1

2
cosx+

1

14

∫
sinu du

= −1

2
cosx− 1

14
cosu+ C

= −1

2
cosx− 1

14
cos 7x+ C

Example 5 (Challenging) The functions y = ex
2

and y = x2ex
2

do not have elementary antiderivatives, but

y = (2x2 + 1)ex
2

does. Evaluate

∫
(2x2 + 1)ex

2

dx.

The basic difficulty is evaluating

∫
ex

2

dx. So let’s isolate that, and see what happens to the rest of the integrand:

∫
(2x2 + 1)ex

2

dx = 2

∫
x2ex

2

dx+

∫
ex

2

dx

Use parts on the first integral: Choose u = x2, since it will simplify when we differentiate it. Therefore, du = 2xdx.
What is left in the integrand is dv = ex

2
dx. Well, we cannot integrate this to determine v. This approach was

not beneficial!

Before we abandon parts, we should think of other ways to break the integrand up. We could try u = x, which

leads to du = dx, and dv = xex
2
dx. This means we need to determine v =

∫
xex

2

dx. Hey–we can do this integral

using u-substitution! Since we are able to travel a bit further down this path, maybe we are on to something (we
hope!).

v =

∫
xex

2

dx =
1

2

∫
ew dw

Substitution: w = x2, dw = 2x dx

=
1

2
ew

=
1

2
ex

2
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Returning to the original invocation of parts, we have∫
(2x2 + 1)ex

2

dx = 2

∫
x2ex

2

dx+

∫
ex

2

dx

= 2

(∫
u dv

)
+

∫
ex

2

dx

= 2

(
uv −

∫
v du

)
+

∫
ex

2

dx

= 2

(
x · 1

2
ex

2 −
∫

1

2
ex

2

dx

)
+

∫
ex

2

dx

= xex
2 −

∫
ex

2

dx+

∫
ex

2

dx

= xex
2

+ c

We were able to do this integral by cancelling out the component that we could not do! That is awesome.

We added the constant of integration at the end since we know that an indefinite integral should be determined up
to a constant of integration, and for convenience we left the constant out when we did parts. If we had included
a constant there, we wouldn’t need to add one at the end. Remember, if you are ever concerned about constants,
put them in when a definite integral occurs because it is never wrong to include them. You can only get in trouble
with constants by leaving them out.

Example 6 (long)

∫
x

(x− 3)(x2 + 4x+ 5)
dx. This problem is a real test of our organizational abilities!

If you tried u-substitution, you would choose u = x2 + 4x+ 5, so du = (2x+ 4) dx. This does not help you with
this integral.

Since we have a rational integrand, we should try partial fractions and see what happens.

x

(x− 3)(x2 + 4x+ 5)
=

A

x− 3
+

Bx+ C

x2 + 4x+ 5
(split)[ x

(x− 3)(x2 + 4x+ 5)
=

A

x− 3
+

Bx+ C

x2 + 4x+ 5

]
(x− 3)(x2 + 4x+ 5) (clear fractions)

x = A(x2 + 4x+ 5) + (Bx+ C)(x− 3) (simplify)

0 = −x+ Ax2 + 4Ax+ 5A+Bx2 + Cx− 3Bx− 3C (collect powers of x)

0 = (5A− 3C)x0 + (−1 + 4A+ C − 3B)x1 + (A+B)x3 (collect powers of x)

For this to be true for all values of x, we must have the coefficients of the powers of x equal to zero. Then it
won’t matter what we put in for x, the equation will be satisfied. So we must solve the three equations in the
three unknowns A,B,C:

5A− 3C = 0 (1)

−1 + 4A+ C − 3B = 0 (2)

A+B = 0 (3)

From (1) A = −B, and from (2) C = 5A/3 = −5B/3; therefore, (3) becomes −1 + 4(−B) − 5B/3 − 3B = 0,
which means B = −3/26. Therefore, A = 3/26 and C = 5/26.
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We have shown that

x

(x− 3)(x2 + 4x+ 5)
=

1

26

[
3

x− 3
+
−3x+ 5

x2 + 4x+ 5

]
Our integral becomes:∫

x

(x− 3)(x2 + 4x+ 5)
dx =

1

26

[∫
3

x− 3
dx+

∫
−3x+ 5

x2 + 4x+ 5
dx

]
(4)∫

3

x− 3
dx = 3

∫
du

u
Substitution: u = x− 3, du = dx

= 3 ln |u|+ c1

= 3 ln |x− 3|+ c1 (5)

The second integral is more complicated, however, these more complicated integrals that arise in partial fractions
typically follow the same path to solution. We need to complete the square in the denominator, and then we will
get a logarithm and arctangent when we integrate.

Complete the square:

x2 + 4x = x2 + 4x+ 4− 4 = (x2 + 4x+ 4)− 4 = (x+ 2)2 − 4

x2 + 4x+ 5 = (x+ 2)2 + 1

Substitute back into the integral:∫
−3x+ 5

x2 + 4x+ 5
dx =

∫
−3x+ 5

(x+ 2)2 + 1
dx

= −3

∫
x

(x+ 2)2 + 1
dx+ 5

∫
1

(x+ 2)2 + 1
dx (6)∫

x

(x+ 2)2 + 1
dx

Substitution: u = (x+ 2)2 + 1, du = (2x+ 4) dx

=
1

2

∫
2x

(x+ 2)2 + 1
dx+

1

2

∫
4

(x+ 2)2 + 1
dx− 1

2

∫
4

(x+ 2)2 + 1
dx

=
1

2

∫
2x+ 4

(x+ 2)2 + 1
dx−

∫
2

(x+ 2)2 + 1
dx

=
1

2

∫
du

u
−
∫

2

(x+ 2)2 + 1
dx

=
1

2
ln |u| −

∫
2

(x+ 2)2 + 1
dx+ c2

=
1

2
ln
∣∣(x+ 2)2 + 1

∣∣− ∫ 2

(x+ 2)2 + 1
dx+ c2 (7)
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Whew, there is lots going on here! But we are making progress. Substitute (7) back into (6):∫
−3x+ 5

x2 + 4x+ 5
dx = −3

(
1

2
ln
∣∣(x+ 2)2 + 1

∣∣− ∫ 2

(x+ 2)2 + 1
dx+ c2

)
+ 5

∫
1

(x+ 2)2 + 1
dx

= −3

2
ln
∣∣(x+ 2)2 + 1

∣∣+ 6

∫
1

(x+ 2)2 + 1
dx+ c2 + 5

∫
1

(x+ 2)2 + 1
dx

= −3

2
ln
∣∣(x+ 2)2 + 1

∣∣+ 11

∫
1

(x+ 2)2 + 1
dx+ c2

Substitution: u = x+ 2, du = dx

= −3

2
ln
∣∣(x+ 2)2 + 1

∣∣+ 11

∫
1

u2 + 1
du+ c2

and this remaining integral is a basic form,

∫
1

u2 + a2
du =

1

a
arctan(u/a) + c3, so with a = 1 we have

∫
−3x+ 5

x2 + 4x+ 5
dx = −3

2
ln
∣∣(x+ 2)2 + 1

∣∣+ 11 arctan(x+ 2) + c2 + c3 (8)

Finally, substituting (8) and (5) into (4) we get:∫
x

(x− 3)(x2 + 4x+ 5)
dx =

3

26
ln |x− 3| − 3

52
ln
∣∣(x+ 2)2 + 1

∣∣+
11

26
arctan(x+ 2) + c

where we have created the new constant c = c1 + c2 + c3.


