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In Partial Fractions we assume a particular form that the split function of f(x) = P (x)/Q(x) will take. When
we assume a form for the solution, that assumption is justified only if it works! This is a very common technique
in applied mathematics.

Case IV Q(x) contains irreducible quadratic factors, some of which are repeated. I will not be testing you on
these types.

Case I Q(x) is a product of distinct linear factors.

Example
1

(t + 4)(t− 1)

Here Q(x) = (t+ 4)(t− 1), a product of distinct linear factors. The degree of Q(x) is 2, which is greater than the
degree of P (x), which is 0. We can use partial fractions directly, without dividing first.

1

(t + 4)(t− 1)
=

1

(t + 4)(t− 1)
Factor (already done)

=
A

(t + 4)
+

B

(t− 1)
Split

1 = A(t− 1) + B(t + 4) Clearing Fractions

1 = A(−4− 1) + B(−4 + 4) To determine A: evaluate at t = −4

1 = A(−5) + B(0)

A = −1

5

1 = A(+1− 1) + B(+1 + 4) To determine B: evaluate at t = +1

1 = A(0) + B(5)

B =
1

5

1

(t + 4)(t− 1)
= − 1/5

(t + 4)
+

1/5

(t− 1)
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Case II Q(x) is a product of linear factors, some of which are repeated.

Example
x2

(x + 1)3

Here Q(x) = (x + 1)3, a product of a linear factor which is repeated three times. The degree of Q(x) is 3, which
is greater than the degree of P (x), which is 2. We can use partial fractions directly, without dividing first.

x2

(x + 1)3
=

A

(x + 1)
+

B

(x + 1)2
+

C

(x + 1)3
Split

x2 = A(x + 1)2 + B(x + 1) + C Clearing Fractions

(−1)2 = A(−1 + 1)2 + B(−1 + 1) + C To determine C: evaluate at x = −1

1 = A(0) + B(0) + C

C = 1

x2 = A(x + 1)2 + B(x + 1) + 1

(x + 1)(x− 1) = A(x + 1)2 + B(x + 1)

x− 1 = A(x + 1) + B

−1− 1 = A(−1 + 1) + B To determine B: evaluate at x = −1

−2 = A(0) + B

B = −2

x− 1 = A(x + 1)− 2

0− 1 = A(0 + 1)− 2 To determine A: evaluate at x = 0

A = +1

x2

(x + 1)3
=

1

(x + 1)
+

(−2)

(x + 1)2
+

1

(x + 1)3

NOTE: The trick to get the coefficients easily by evaluating at specific x does not always work in this case. You
can always collect powers of x and solve the resulting equations instead.



Examples from Section 7.4: Partial Fractions Page 3

Case III Q(x) contains irreducible quadratic factors, none of which are repeated.

Example
x2

(x3 + 1)

Here Q(x) = (x3 + 1) = (x + 1)(1 − x + x2), a product of a linear factor and a quadratic factor which is not
repeated. The degree of Q(x) is 3, which is greater than the degree of P (x), which is 2. We can use partial
fractions directly, without dividing first. In this example, I will collect powers of x to get the equations to solve,
which is just showing you another way of doing partial fractions.

x2

(x3 + 1)
=

x2

(x + 1)(1− x + x2)
Factor

=
A

(x + 1)
+

Bx + C

(1− x + x2)
Split

x2 = A(1− x + x2) + (Bx + C)(x + 1) Clearing Fractions

0 = −x2 + A− Ax + Ax2 + Bx2 + Cx + Bx + C Collect Powers of x

0 = (A + C)x0 + (−A + C + B)x1 + (−1 + A + B)x2

So we have to solve the system of equations for A,B,C:

A + C = 0 (1)

−A + C + B = 0 (2)

−1 + A + B = 0 (3)

From Eq. (3), we have A = 1−B. Then from Eq. (2) we have C = −2B+1, and Eq. (1) gives −2B+1 = −1+B,
so B = 2/3, and C = −1/3, and A = 1/3.

x2

(x3 + 1)
=

1/3

(x + 1)
+

(2x/3− 1/3)

(1− x + x2)
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Completing the Square

∫
x + 2

(1 + x + x2)
dx

Solution It can be done if we complete the square:

x2 + bx =

(
x +

b

2

)2

− b2

4

So we can write 1 + x + x2 = x2 + x + 1 = (x + 1
2
)2 − 1

4
+ 1 = (x + 1/2)2 + 3/4.∫

x + 2

(1 + x + x2)
dx =

∫
x + 2

(
(
x + 1

2

)2
+ 3

4
)
dx Substitution: u = x + 1/2

=

∫
u− 1/2 + 2

(u2 + 3
4
)

du

=

∫
u− 3/2

(u2 + 3
4
)
du

=

∫
u

(u2 + 3
4
)
du +

3

2

∫
1

(u2 + 3
4
)
du Substitution: t = u2 + 3/4

=
1

2

∫
dt

t
+

3

2
· 2√

3
arctan

(
2√
3
u

)
=

1

2
ln |t|+

√
3 arctan

(
2√
3
u

)
+ c

=
1

2
ln |1 + x + x2|+

√
3 arctan

(
2√
3

(
x +

1

2

))
+ c

We can combine the partial fraction cases, which just makes for more equations to solve.

Example

∫
x2 − 2x− 1

(x− 1)2(x2 + 1)
dx

x2 − 2x− 1

(x− 1)2(x2 + 1)
=

A

x− 1
+

B

(x− 1)2
+

Cx + D

x2 + 1

x2 − 2x− 1 = A(x− 1)(x2 + 1) + B(x2 + 1) + (Cx + D)(x− 1)2

Evaluate at x = 1: − 2 = 2B −→ B = −1

Evaluate at x = 0: − 1 = −A + B + D −→ A = D

Evaluate at x = −1: 2 = −4A + 2B − 4C + 4D −→ 1 = −A− C + D

Evaluate at x = 2: − 1 = 5A + 5B + 2C + D −→ 4 = 5A + 2C + D

You can solve the system of three equations and three unknowns by any method you like (back substitution works
fine).

You will find A = 1, C = −1, D = 1.
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Therefore,

x2 − 2x− 1

(x− 1)2(x2 + 1)
=

1

x− 1
− 1

(x− 1)2
+

1− x

x2 + 1∫
x2 − 2x− 1

(x− 1)2(x2 + 1)
dx =

∫
1

x− 1
dx−

∫
1

(x− 1)2
dx +

∫
1− x

x2 + 1
dx

The first and second integrals can be done using a substitution, the third should be split up to involve a substitution
and an arctangent form.∫

1

x− 1
dx =

∫
du

u
where u = x− 1, du = dx

= ln |u|+ c1

= ln |x− 1|+ c1∫
1

(x− 1)2
dx =

∫
du

u2
where u = x− 1, du = dx

= −1

u
+ c2

= − 1

x− 1
+ c2∫

1− x

x2 + 1
dx =

∫
1

x2 + 1
dx−

∫
x

x2 + 1
dx

= arctanx− 1

2

∫
du

u
dx where u = x2 + 1, du = 2xdx

= arctanx− 1

2
ln |u|+ c3

= arctanx− 1

2
ln |x2 + 1|+ c3

Putting it all together we get∫
x2 − 2x− 1

(x− 1)2(x2 + 1)
dx =

∫
1

x− 1
dx−

∫
1

(x− 1)2
dx +

∫
1− x

x2 + 1
dx

= ln |x− 1|+ 1

x− 1
+ arctanx− 1

2
ln |x2 + 1|+ c

where c = c1 − c2 + c3.


