Example 11.8.4 For the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$, find the radius of convergence and the interval of convergence.
Let's use the ratio test, with $a_{n}=\frac{(-1)^{n} x^{n}}{n+1}$. It will tell us the radius of convergence.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{n+2} \cdot \frac{n+1}{(-1)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{n+1-n} \frac{n+1}{n+2}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{n+1}{n+2} \\
& =|x| \lim _{n \rightarrow \infty} \frac{1+1 / n}{1+2 / n} \\
& =|x| \frac{1+0}{1+0}=|x|
\end{aligned}
$$

So $|x|<1$ for absolute convergence. The center of this series is $x=a=0$, and the radius of convergence is $R=1$.

We must check the endpoints separately to get the interval of convergence.
$x=1: \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$
We can test this series using the alternating series test. Identify $b_{n}=1 /(n+1)$.
Since $b_{n+1}=\frac{1}{n+2}<\frac{1}{n+1}=b_{n}$, the first condition is satisfied.
Since $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ the second condition is satisfied.
Therefore, the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ converges by the alternating series test.
$x=-1: \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{1}{n+1}=\sum_{m=1}^{\infty} \frac{1}{m}$ which is a p-series, with $p=1$ so it diverges.
The interval of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$ is $I=(-1,1]$.
Example 11.8.38 Suppose that the radius of convergence of the power series $\sum c_{n} x^{n}$ is R. What is the radius of convergence of the power series $\sum c_{n} x^{2 n}$?

Both these series have a center of $x=a=0$.
Since $\sum c_{n} x^{n}$ has a radius of convergence R, we know that the series converges for all $|x-a|<R$, or $|x|<R$ in this case.

The second series is $\sum c_{n} x^{2 n}=\sum c_{n}\left(x^{2}\right)^{n}$. This is the same form as the first series, with x replaced by x^{2}. Therefore the new series will have a radius of convergence which satisfies $\left|x^{2}\right|<R$, or $|x|<\sqrt{R}$.

The radius of convergence of the new series is \sqrt{R}.
Example For the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n+1}$, find the radius of convergence and the interval of convergence.
Let's use the ratio test, with $a_{n}=\frac{(-1)^{n}(x+2)^{n}}{n+1}$. It will tell us the radius of convergence.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x+2)^{n+1}}{n+2} \cdot \frac{n+1}{(-1)^{n}(x+2)^{n}}\right| \\
& =|x+2| \lim _{n \rightarrow \infty} \frac{n+1}{n+2} \\
& =|x+2| \lim _{n \rightarrow \infty} \frac{1+1 / n}{1+2 / n} \\
& =|x+2|\left(\frac{1+0}{1+0}\right)=|x+2|
\end{aligned}
$$

Therefore, for the series to be absolutely convergent, we require $|x+2|<1$. From this, we can say the series has a center of $a=-2$, and a radius of convergence of $R=1$.

We need to check the endpoints separately. The endpoints of the region are found by expanding $|x+2|<1$:

$$
\begin{array}{rccl}
-1 & x+2 & <1 \\
-1-2 & < & x & <1-2 \\
-3 & < & x & <-1
\end{array}
$$

$x=-3: \sum_{n=0}^{\infty} \frac{(-1)^{n}(-3+2)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{2 n}}{n+1}=\sum_{n=0}^{\infty} \frac{1}{n+1}$. This is the divergent harmonic series $(p$-series with $p=1$).
$x=-1: \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1+2)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$.

We can test this series using the alternating series test. Identify $b_{n}=1 /(n+1)$.
Since $b_{n+1}=\frac{1}{n+2}<\frac{1}{n+1}=b_{n}$, the first condition is satisfied.
Since $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$ the second condition is satisfied.
Therefore, the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ converges by the alternating series test.
The interval of convergence for the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n+1}$ is $I=(-3,-1]$.

