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1102 Calculus II 11.7 Strategy for Testing Series

Example 11.7.1 Is the series
∞∑

n=1

n2 − 1
n2 + n

absolutely convergent, conditionally convergent, or divergent?

We identify an =
n2 − 1
n2 + n

.

Since the power of n is the same in the numerator and denominator, we expect the limit as n → ∞ of an

not to be zero. Therefore, let’s use the test for divergence.

lim
n→∞

an = lim
n→∞

n2 − 1
n2 + n

= lim
n→∞

1− 1/n2

1 + 1/n

=
1− 0
1 + 0

= 1 6= 0

Since limn→∞ an 6= 0, the series
∑

an diverges by the test for divergence.

Example 11.7.4 Is the series
∞∑

n=1

(−1)n−1 n− 1
n2 + n

absolutely convergent, conditionally convergent, or diver-

gent?

We identify an = (−1)n−1 n− 1
n2 + n

.

Since the series is alternating, we should try the alternating series test.

We will also need bn = |an| =
n− 1
n2 + n

.

First, we need to show bn+1 ≤ bn for all n. We could try to do it by inspection, like we have done before,

bn+1 =
n

(n + 1)2 + n + 1

but it is hard to compare this to bn. Instead, we can look at the continuous counterpart. If the derivative is
less than zero, then the function is decreasing, and we will be able to say that bn+1 ≤ bn.

f(x) =
x− 1
x2 + x

f ′(x) =
(x2 + x)(1)− (x− 1)(2x + 1)

(x2 + x)2

=
(x2 + x)(1)− (x− 1)(2x + 1)

(x2 + x)2

=
x2 + x− 2x2 + 2x− x + 1

(x2 + x)2

=
1 + 2x− x2

(x2 + x)2
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Now, the denominator is always greater than zero. For the numerator, we need to know when it becomes
negative.

(1 + 2x− x2)x=1 = 1 + 2− 1 = 2 > 0
(1 + 2x− x2)x=2 = 1 + 4− 4 = 1 > 0
(1 + 2x− x2)x=3 = 1 + 6− 9 = −2 < 0

So we have f ′(x) < 0 for n ≥ 3. This means bn+1 ≤ bn for n ≥ 3.

The second condition of the alternating series test is that limn→∞ bn = 0.

lim
n→∞

bn = lim
n→∞

n− 1
n2 + n

= lim
n→∞

1/n− 1/n2

1 + 1/n

=
0− 0
1 + 0

= 0

So the series
∞∑

n=3

an converges by the alternating series test.

Since
∞∑

n=3

an converges, then
∞∑

n=1

an converges.

Now, we want to check the convergence of the series
∑

bn =
∑
|an|, to determine if the series

∑
an is

absolutely or conditionally convergent.

Let’s check this series using the limit comparison test. Since n − 1 ∼ n and n2 + n ∼ n2 for large n, we
should use as our comparison series

∑
cn where cn = n/n2 = 1/n, which is the divergent p-series with p = 1.

lim
n→∞

cn

bn
= lim

n→∞

1
n
· n2 + n

n− 1

= lim
n→∞

n + 1
n− 1

= lim
n→∞

1 + 1/n

1− 1/n

=
1 + 0
1− 0

= 1 > 0 and finite.

So, since the limit was greater than zero and finite, and the comparison series
∑

cn diverged, the series∑
bn =

∑
|an| must also diverge.

Therefore,
∑

an converges and
∑
|an| diverges, so the series

∑
an is conditionally convergent.
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Example 11.7.6 Is the series
∞∑

n=1

(
3n

1 + 8n

)n

absolutely convergent, conditionally convergent, or divergent?

We identify an =
(

3n

1 + 8n

)n

.

Since we have an = (bn)n, we should try the root test.

lim
n→∞

(|an|)1/n = lim
n→∞

(∣∣∣∣( 3n

1 + 8n

)n∣∣∣∣)1/n

= lim
n→∞

((
3n

1 + 8n

)n)1/n

= lim
n→∞

3n

1 + 8n

= lim
n→∞

3
1/n + 8

=
3

0 + 8
=

3
8

< 1

The series
∑

an is absolutely convergent by the root test.

Example 11.7.9 Is the series
∞∑

n=1

n

en
absolutely convergent, conditionally convergent, or divergent?

We identify an =
n

en
.

Since we have a constant raised to the power n, we should try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n + 1
en+1

· en

n

= lim
n→∞

n + 1
n

· 1
en+1−n

=
1
e

lim
n→∞

n + 1
n

=
1
e

lim
n→∞

(
1 +

1
n

)
=

1
e

< 1

The series
∑

an is absolutely convergent by the ratio test.

Example 11.7.14 Is the series
∞∑

n=1

n2 + 1
n3 + 1

absolutely convergent, conditionally convergent, or divergent?

We identify an =
n2 + 1
n3 + 1

.
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Because we have a ratio of polynomials, we should use one of the comparison tests. Since n2 + 1 ∼ n2 and
n3 + 1 ∼ n3 for large n, we should use as our comparison series

n2 + 1
n3 + 1

∼ n2

n3
=

1
n

Let bn = 1/n, the divergent p-series with p = 1.

Use the limit comparison test.

lim
n→∞

an

bn
= lim

n→∞

n2 + 1
n3 + 1

· n

= lim
n→∞

n3 + n

n3 + 1

= lim
n→∞

1 + 1/n2

1 + 1/n3

=
1 + 0
1 + 0

= 1 > 0 and finite.

So, since the limit was greater than zero and finite, and the comparison series
∑

bn diverged, the series
∑

an

must also diverge.

Example 11.7.17 Is the series
∞∑

n=1

3n

5n + n
absolutely convergent, conditionally convergent, or divergent?

We identify an =
3n

5n + n
.

Since we have a constant to a power of n appearing, we may want to try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3n+1

5n+1 + n + 1
· 5n + n

3n

This is yucky looking. It is yucky looking since the term 5n + n will not easily simplify with its n + 1
counterpart.

Let’s try something different instead. A comparison test might work well.

an =
3n

5n + n
≤ 3n

5n
=

(
3
5

)n

= bn for all n.

Our comparison series is
∑

bn, which is a geometric series with a = 1 and r = 3/5, and since |r| = |3/5| < 1
the series

∑
bn converges.

Since an ≤ bn for all n, and
∑

bn converges, the series
∑

an converges by the comparison test.

Since the terms an are all positive, an = |an|. Therefore the series
∑
|an| is also convergent. Therefore, the

series
∑

an is absolutely convergent.
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Example 11.7.23 Is the series
∞∑

n=1

(−1)n21/n absolutely convergent, conditionally convergent, or divergent?

We identify an = (−1)n21/n.

This series diverges by the test for divergence.

lim
n→∞

an = lim
n→∞

(−1)n21/n

The 21/n → 20 = 1 as n → ∞, but the alternating part (−1)n means that for large n the series
∑

an

oscillates between (almost) ±1. Therefore, limn→∞ an does not exist, and the series
∑

an diverges by the
test for divergence.

Example 11.7.25 Is the series
∞∑

n=1

(−1)n lnn√
n

absolutely convergent, conditionally convergent, or divergent?

We identify an = (−1)n lnn√
n

.

Since this is an alternating series test, we should try the alternating series test.

We identify bn = |an| =
lnn√

n
.

For the first condition of the alternating series test, bn+1 ≤ bn for all n, we need to work with the continuous
function f(x) where f(n) = bn and then show f(x) is decreasing.

f(x) =
lnx√

x

f ′(x) =

√
x 1

x − lnx 1
2
√

x

(
√

x)2

=
2− lnx

2x3/2

So we have f(x) < 0 if 2− lnx < 0, which is the same as x > e2. This means that for n > e2, bn+1 ≤ bn.

I know e < 3, so let’s just say that we have bn+1 ≤ bn if n ≥ 9.

The second condition of the alternating series test is to show limn→∞ bn = 0.

lim
n→∞

bn = lim
n→∞

lnn√
n
−→ ∞

∞
indeterminate quotient

We want to use L’Hospital’s Rule to evaluate this limit, but we have to switch to a continuous function
first, since the derivative is not defined for the discrete variable n. Pick f(x) such that f(n) = bn, and then
proceed.

lim
x→∞

f(x) = lim
x→∞

lnx√
x
−→ ∞

∞
indeterminate quotient
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= lim
x→∞

(
1
x

)(
1

2
√

x

)
= lim

x→∞

2√
x

= 0

Therefore, we also have lim
n→∞

bn = 0.

The series
∞∑

n=9

an converges by the alternating series test.

Since
∞∑

n=9

an converges, then
∞∑

n=1

an converges.

Now, we want to check the convergence of the series
∑

bn =
∑
|an|, to determine if the series

∑
an is

absolutely or conditionally convergent.

We can use the comparison test for this. Here is how we construct our comparison series.

lnn > 1 if n > 3
lnn√

n
>

1√
n

if n > 3

So our comparison series should be
∑

cn where cn =
1√
n

, which is the divergent p-series, with p = 1/2.

Since bn =
lnn√

n
>

1√
n

= cn if n > 3, and
∑

cn diverges, we have that
∑

bn must also diverge by the

comparison test.

Therefore,
∑

an converges and
∑
|an| =

∑
bn diverges, so the series

∑
an is conditionally convergent.

Example 11.7.31 Is the series
∞∑

n=1

2n

(2n + 1)!
absolutely convergent, conditionally convergent, or divergent?

We identify an =
2n

(2n + 1)!
.

Since there is a factorial in an, we will try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

(2(n + 1) + 1)!
· (2n + 1)!

2n

= lim
n→∞

2n+1−n (2n + 1)!
(2n + 3)!

= 2 lim
n→∞

1 · 2 · 3 · · · (2n− 1) · (2n) · (2n + 1)
1 · 2 · 3 · · · (2n− 1) · (2n) · (2n + 1) · (2n + 2) · (2n + 3)

= 2 lim
n→∞

1
(2n + 2) · (2n + 3)
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= 0 < 1

The series
∑

an is absolutely convergent by the ratio test.

Example 11.7.30 Is the series
∞∑

n=1

e1/n

n2
absolutely convergent, conditionally convergent, or divergent?

We identify an =
e1/n

n2
.

Looking at the form of an, we notice that if u = 1/x, then du = −1/x2 dx, so we could probably use the
integral test.

Let f(x) =
e1/x

x2
, and then we have f(n) = an.

On the interval [1,∞), we have that f(x) is

• continuous, since e1/x and 1/x2 are both continuous,

• positive, since e1/x and 1/x2 are both positive,

• decreasing, since e1/x and 1/x2 are both decreasing.

So the integral test can be applied.

∫ ∞

1

f(x) dx =
∫ ∞

1

e1/x

x2
dx substitution:

u = 1/x
du = −1/x2 dx
when x = 1 → u = 1
when x = ∞→ u = 0

= −
∫ 0

1

eu du

=
∫ 1

0

eu du

= eu|10 = e1 − e0 = e− 1

Since the integral converges, the series
∑

an also converges by the integral test.

Since the terms an are greater than zero, we have an = |an|, and the series
∑
|an| converges as well.

Therefore, the series
∑

an is absolutely convergent.


