## 1102 Calculus II 11.7 Strategy for Testing Series

Example 11.7.1 Is the series $\sum_{n=1}^{\infty} \frac{n^{2}-1}{n^{2}+n}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{n^{2}-1}{n^{2}+n}$.
Since the power of $n$ is the same in the numerator and denominator, we expect the limit as $n \rightarrow \infty$ of $a_{n}$ not to be zero. Therefore, let's use the test for divergence.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty} \frac{n^{2}-1}{n^{2}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1-1 / n^{2}}{1+1 / n} \\
& =\frac{1-0}{1+0}=1 \neq 0
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series $\sum a_{n}$ diverges by the test for divergence.
Example 11.7.4 Is the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n-1}{n^{2}+n}$ absolutely convergent, conditionally convergent, or divergent?

We identify $a_{n}=(-1)^{n-1} \frac{n-1}{n^{2}+n}$.
Since the series is alternating, we should try the alternating series test.
We will also need $b_{n}=\left|a_{n}\right|=\frac{n-1}{n^{2}+n}$.
First, we need to show $b_{n+1} \leq b_{n}$ for all $n$. We could try to do it by inspection, like we have done before,

$$
b_{n+1}=\frac{n}{(n+1)^{2}+n+1}
$$

but it is hard to compare this to $b_{n}$. Instead, we can look at the continuous counterpart. If the derivative is less than zero, then the function is decreasing, and we will be able to say that $b_{n+1} \leq b_{n}$.

$$
\begin{aligned}
f(x) & =\frac{x-1}{x^{2}+x} \\
f^{\prime}(x) & =\frac{\left(x^{2}+x\right)(1)-(x-1)(2 x+1)}{\left(x^{2}+x\right)^{2}} \\
& =\frac{\left(x^{2}+x\right)(1)-(x-1)(2 x+1)}{\left(x^{2}+x\right)^{2}} \\
& =\frac{x^{2}+x-2 x^{2}+2 x-x+1}{\left(x^{2}+x\right)^{2}} \\
& =\frac{1+2 x-x^{2}}{\left(x^{2}+x\right)^{2}}
\end{aligned}
$$

Now, the denominator is always greater than zero. For the numerator, we need to know when it becomes negative.

$$
\begin{aligned}
& \left(1+2 x-x^{2}\right)_{x=1}=1+2-1=2>0 \\
& \left(1+2 x-x^{2}\right)_{x=2}=1+4-4=1>0 \\
& \left(1+2 x-x^{2}\right)_{x=3}=1+6-9=-2<0
\end{aligned}
$$

So we have $f^{\prime}(x)<0$ for $n \geq 3$. This means $b_{n+1} \leq b_{n}$ for $n \geq 3$.
The second condition of the alternating series test is that $\lim _{n \rightarrow \infty} b_{n}=0$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{n-1}{n^{2}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1 / n-1 / n^{2}}{1+1 / n} \\
& =\frac{0-0}{1+0}=0
\end{aligned}
$$

So the series $\sum_{n=3}^{\infty} a_{n}$ converges by the alternating series test.
Since $\sum_{n=3}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Now, we want to check the convergence of the series $\sum b_{n}=\sum\left|a_{n}\right|$, to determine if the series $\sum a_{n}$ is absolutely or conditionally convergent.

Let's check this series using the limit comparison test. Since $n-1 \sim n$ and $n^{2}+n \sim n^{2}$ for large $n$, we should use as our comparison series $\sum c_{n}$ where $c_{n}=n / n^{2}=1 / n$, which is the divergent $p$-series with $p=1$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{c_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{n^{2}+n}{n-1} \\
& =\lim _{n \rightarrow \infty} \frac{n+1}{n-1} \\
& =\lim _{n \rightarrow \infty} \frac{1+1 / n}{1-1 / n} \\
& =\frac{1+0}{1-0}=1>0 \text { and finite. }
\end{aligned}
$$

So, since the limit was greater than zero and finite, and the comparison series $\sum c_{n}$ diverged, the series $\sum b_{n}=\sum\left|a_{n}\right|$ must also diverge.

Therefore, $\sum a_{n}$ converges and $\sum\left|a_{n}\right|$ diverges, so the series $\sum a_{n}$ is conditionally convergent.

Example 11.7.6 Is the series $\sum_{n=1}^{\infty}\left(\frac{3 n}{1+8 n}\right)^{n}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\left(\frac{3 n}{1+8 n}\right)^{n}$.
Since we have $a_{n}=\left(b_{n}\right)^{n}$, we should try the root test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\left|a_{n}\right|\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(\left|\left(\frac{3 n}{1+8 n}\right)^{n}\right|\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left(\left(\frac{3 n}{1+8 n}\right)^{n}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{3 n}{1+8 n} \\
& =\lim _{n \rightarrow \infty} \frac{3}{1 / n+8} \\
& =\frac{3}{0+8}=\frac{3}{8}<1
\end{aligned}
$$

The series $\sum a_{n}$ is absolutely convergent by the root test.
Example 11.7.9 Is the series $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{n}{e^{n}}$.
Since we have a constant raised to the power $n$, we should try the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{n+1}{e^{n+1}} \cdot \frac{e^{n}}{n} \\
& =\lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \frac{1}{e^{n+1-n}} \\
& =\frac{1}{e} \lim _{n \rightarrow \infty} \frac{n+1}{n} \\
& =\frac{1}{e} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \\
& =\frac{1}{e}<1
\end{aligned}
$$

The series $\sum a_{n}$ is absolutely convergent by the ratio test.
Example 11.7.14 Is the series $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{n^{2}+1}{n^{3}+1}$.

Because we have a ratio of polynomials, we should use one of the comparison tests. Since $n^{2}+1 \sim n^{2}$ and $n^{3}+1 \sim n^{3}$ for large $n$, we should use as our comparison series

$$
\frac{n^{2}+1}{n^{3}+1} \sim \frac{n^{2}}{n^{3}}=\frac{1}{n}
$$

Let $b_{n}=1 / n$, the divergent $p$-series with $p=1$.
Use the limit comparison test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}+1} \cdot n \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}+n}{n^{3}+1} \\
& =\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{1+1 / n^{3}} \\
& =\frac{1+0}{1+0}=1>0 \text { and finite. }
\end{aligned}
$$

So, since the limit was greater than zero and finite, and the comparison series $\sum b_{n}$ diverged, the series $\sum a_{n}$ must also diverge.

Example 11.7.17 Is the series $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+n}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{3^{n}}{5^{n}+n}$.
Since we have a constant to a power of $n$ appearing, we may want to try the ratio test.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3^{n+1}}{5^{n+1}+n+1} \cdot \frac{5^{n}+n}{3^{n}}
$$

This is yucky looking. It is yucky looking since the term $5^{n}+n$ will not easily simplify with its $n+1$ counterpart.

Let's try something different instead. A comparison test might work well.

$$
a_{n}=\frac{3^{n}}{5^{n}+n} \leq \frac{3^{n}}{5^{n}}=\left(\frac{3}{5}\right)^{n}=b_{n} \quad \text { for all } n
$$

Our comparison series is $\sum b_{n}$, which is a geometric series with $a=1$ and $r=3 / 5$, and since $|r|=|3 / 5|<1$ the series $\sum b_{n}$ converges.

Since $a_{n} \leq b_{n}$ for all $n$, and $\sum b_{n}$ converges, the series $\sum a_{n}$ converges by the comparison test.
Since the terms $a_{n}$ are all positive, $a_{n}=\left|a_{n}\right|$. Therefore the series $\sum\left|a_{n}\right|$ is also convergent. Therefore, the series $\sum a_{n}$ is absolutely convergent.

Example 11.7.23 Is the series $\sum_{n=1}^{\infty}(-1)^{n} 2^{1 / n}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=(-1)^{n} 2^{1 / n}$.
This series diverges by the test for divergence.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)^{n} 2^{1 / n}
$$

The $2^{1 / n} \rightarrow 2^{0}=1$ as $n \rightarrow \infty$, but the alternating part $(-1)^{n}$ means that for large $n$ the series $\sum a_{n}$ oscillates between (almost) $\pm 1$. Therefore, $\lim _{n \rightarrow \infty} a_{n}$ does not exist, and the series $\sum a_{n}$ diverges by the test for divergence.

Example 11.7.25 Is the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=(-1)^{n} \frac{\ln n}{\sqrt{n}}$.
Since this is an alternating series test, we should try the alternating series test.
We identify $b_{n}=\left|a_{n}\right|=\frac{\ln n}{\sqrt{n}}$.
For the first condition of the alternating series test, $b_{n+1} \leq b_{n}$ for all $n$, we need to work with the continuous function $f(x)$ where $f(n)=b_{n}$ and then show $f(x)$ is decreasing.

$$
\begin{aligned}
f(x) & =\frac{\ln x}{\sqrt{x}} \\
f^{\prime}(x) & =\frac{\sqrt{x} \frac{1}{x}-\ln x \frac{1}{2 \sqrt{x}}}{(\sqrt{x})^{2}} \\
& =\frac{2-\ln x}{2 x^{3 / 2}}
\end{aligned}
$$

So we have $f(x)<0$ if $2-\ln x<0$, which is the same as $x>e^{2}$. This means that for $n>e^{2}, b_{n+1} \leq b_{n}$.
I know $e<3$, so let's just say that we have $b_{n+1} \leq b_{n}$ if $n \geq 9$.
The second condition of the alternating series test is to show $\lim _{n \rightarrow \infty} b_{n}=0$.

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}} \longrightarrow \frac{\infty}{\infty} \quad \text { indeterminate quotient }
$$

We want to use L'Hospital's Rule to evaluate this limit, but we have to switch to a continuous function first, since the derivative is not defined for the discrete variable $n$. Pick $f(x)$ such that $f(n)=b_{n}$, and then proceed.

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}} \longrightarrow \frac{\infty}{\infty} \quad \text { indeterminate quotient }
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{\left(\frac{1}{2 \sqrt{x}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}} \\
& =0
\end{aligned}
$$

Therefore, we also have $\lim _{n \rightarrow \infty} b_{n}=0$.
The series $\sum_{n=9}^{\infty} a_{n}$ converges by the alternating series test.
Since $\sum_{n=9}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Now, we want to check the convergence of the series $\sum b_{n}=\sum\left|a_{n}\right|$, to determine if the series $\sum a_{n}$ is absolutely or conditionally convergent.

We can use the comparison test for this. Here is how we construct our comparison series.

$$
\begin{array}{rll}
\ln n>1 & \text { if } & n>3 \\
\frac{\ln n}{\sqrt{n}}>\frac{1}{\sqrt{n}} & \text { if } & n>3
\end{array}
$$

So our comparison series should be $\sum c_{n}$ where $c_{n}=\frac{1}{\sqrt{n}}$, which is the divergent $p$-series, with $p=1 / 2$.
Since $b_{n}=\frac{\ln n}{\sqrt{n}}>\frac{1}{\sqrt{n}}=c_{n}$ if $n>3$, and $\sum c_{n}$ diverges, we have that $\sum b_{n}$ must also diverge by the comparison test.

Therefore, $\sum a_{n}$ converges and $\sum\left|a_{n}\right|=\sum b_{n}$ diverges, so the series $\sum a_{n}$ is conditionally convergent.
Example 11.7.31 Is the series $\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n+1)!}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{2^{n}}{(2 n+1)!}$.
Since there is a factorial in $a_{n}$, we will try the ratio test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(2(n+1)+1)!} \cdot \frac{(2 n+1)!}{2^{n}} \\
& =\lim _{n \rightarrow \infty} 2^{n+1-n} \frac{(2 n+1)!}{(2 n+3)!} \\
& =2 \lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdots(2 n-1) \cdot(2 n) \cdot(2 n+1)}{1 \cdot 2 \cdot 3 \cdots(2 n-1) \cdot(2 n) \cdot(2 n+1) \cdot(2 n+2) \cdot(2 n+3)} \\
& =2 \lim _{n \rightarrow \infty} \frac{1}{(2 n+2) \cdot(2 n+3)}
\end{aligned}
$$

$$
=0<1
$$

The series $\sum a_{n}$ is absolutely convergent by the ratio test.
Example 11.7.30 Is the series $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$ absolutely convergent, conditionally convergent, or divergent?
We identify $a_{n}=\frac{e^{1 / n}}{n^{2}}$.
Looking at the form of $a_{n}$, we notice that if $u=1 / x$, then $d u=-1 / x^{2} d x$, so we could probably use the integral test.

Let $f(x)=\frac{e^{1 / x}}{x^{2}}$, and then we have $f(n)=a_{n}$.
On the interval $[1, \infty)$, we have that $f(x)$ is

- continuous, since $e^{1 / x}$ and $1 / x^{2}$ are both continuous,
- positive, since $e^{1 / x}$ and $1 / x^{2}$ are both positive,
- decreasing, since $e^{1 / x}$ and $1 / x^{2}$ are both decreasing.

So the integral test can be applied.

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\int_{1}^{\infty} \frac{e^{1 / x}}{x^{2}} d x \quad \text { substitution: } \begin{array}{l}
u=1 / x \\
d u=-1 / x^{2} d x \\
\text { when } x=1 \rightarrow u=1 \\
\text { when } x=\infty \rightarrow u=0
\end{array} \\
& =-\int_{1}^{0} e^{u} d u \\
& =\int_{0}^{1} e^{u} d u \\
& =\left.e^{u}\right|_{0} ^{1}=e^{1}-e^{0}=e-1
\end{aligned}
$$

Since the integral converges, the series $\sum a_{n}$ also converges by the integral test.
Since the terms $a_{n}$ are greater than zero, we have $a_{n}=\left|a_{n}\right|$, and the series $\sum\left|a_{n}\right|$ converges as well. Therefore, the series $\sum a_{n}$ is absolutely convergent.

