Questions

Example $\int \frac{1}{x \sqrt{x^{2}-9}} d x$.
Example $\int_{0}^{1} \sqrt{2 x-x^{2}} d x$.
Example $\int \frac{\sqrt{1+x^{2}}}{x} d x$.

Solutions

Example $\int \frac{1}{x \sqrt{x^{2}-9}} d x$.
The integrand contains $\sqrt{x^{2}-a^{2}}$, so we should use the trig substitution:

$$
\begin{aligned}
& x=a \sec \theta=3 \sec \theta \\
& d x=3 \sec \theta \tan \theta d \theta \\
& \text { where } 0<\theta<\frac{\pi}{2} \text { or } \pi<\theta<\frac{3 \pi}{2}
\end{aligned}
$$

Now, we find expressions for the components of the integrand:

$$
\begin{aligned}
\sqrt{x^{2}-9} & =\sqrt{9 \sec ^{2} \theta-9} \\
& =3 \sqrt{\sec ^{2} \theta-1} \\
& =3 \sqrt{\tan ^{2} \theta} \\
& =3|\tan \theta| \\
& =3 \tan \theta(\text { since } \tan \theta>0 \text { in our restricted domain for } \theta!) \\
x & =3 \sec \theta
\end{aligned}
$$

And now we do the integral:

$$
\begin{aligned}
\int \frac{d x}{x \sqrt{x^{2}-9}} & =\int \frac{3 \sec \theta \tan \theta d \theta}{(3 \sec \theta)(3 \tan \theta)} \\
& =\frac{1}{3} \int d \theta \\
& =\frac{1}{3} \theta+c \\
& =\frac{1}{3} \arccos \left(\frac{3}{x}\right)+c \\
\text { or } & =\frac{1}{3} \arctan \left(\frac{\sqrt{x^{2}-9}}{3}\right)+c \\
\text { or } & =\frac{1}{3} \arcsin \left(\frac{\sqrt{x^{2}-9}}{x}\right)+c
\end{aligned}
$$

We could pick any one of the last three expressions for the integral. There are other expressions for the integral as well.
If you compare this with Mathematica's result, you may think you have made an error. If you use the identity $\arctan x=$ $-\arctan (1 / x)+\pi / 2$, you can show the two results are the same.

Example $\int_{0}^{1} \sqrt{2 x-x^{2}} d x$.
The integrand does not look like any of the forms we can use trig substitution on. We must therefore modify it before we can use trig substitution.

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2 x-x^{2}} d x & =\int_{0}^{1} \sqrt{x(2-x)} d x \\
& =\int_{0}^{1} \sqrt{x} \sqrt{2-x} d x \\
& =\int_{0}^{1} \sqrt{x} \sqrt{2-(\sqrt{x})^{2}} d x \quad \text { Substitution: } \begin{array}{ll}
u=\sqrt{x} & x=0 \rightarrow u=0 \\
d u=\frac{1}{2} \frac{d x}{\sqrt{x}} & x=1 \rightarrow u=1
\end{array} \\
& =2 \int_{0}^{1} u^{2} \sqrt{2-u^{2}} d u
\end{aligned}
$$

the integrand has a $\sqrt{a^{2}-u^{2}}$, so we should use the trig substitution:

$$
\begin{aligned}
& u=a \sin \theta=\sqrt{2} \sin \theta \\
& d u=\sqrt{2} \cos \theta d \theta \\
& \text { where } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}
\end{aligned}
$$

Instead of back substituting later, we can change the limits of this definite integral right now:
When $u=0$, then $\theta=\arcsin 0=0$.
When $u=1$, then $\theta=\arcsin (1 / \sqrt{2})=\pi / 4$.
Now, we find expressions for the components of the integrand:

$$
\begin{aligned}
\sqrt{2-u^{2}} & =\sqrt{2-2 \sin ^{2} \theta} \\
& =\sqrt{2} \sqrt{1-\sin ^{2} \theta} \\
& =\sqrt{2} \sqrt{\cos ^{2} \theta} \\
& =\sqrt{2} \mid \cos \theta \\
& =\sqrt{2} \cos \theta \text { (since } \theta \text { runs from } 0 \text { to } \pi / 4, \cos \theta>0)
\end{aligned}
$$

And now we do the integral:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2 x-x^{2}} d x & =2 \int_{0}^{1} u^{2} \sqrt{2-u^{2}} d u \\
& =2 \int_{0}^{\pi / 4}\left(2 \sin ^{2} \theta\right)(\sqrt{2} \cos \theta)(\sqrt{2} \cos \theta d \theta) \\
& =8 \int_{0}^{\pi / 4} \sin ^{2} \theta \cos ^{2} \theta d \theta
\end{aligned}
$$

Now we need to use some trig identities to do this trig integral:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2 x-x^{2}} d x & =8 \int_{0}^{\pi / 4} \sin ^{2} \theta \cos ^{2} \theta d \theta \\
& =2 \int_{0}^{\pi / 4}(1-\cos 2 \theta)(1+\cos 2 \theta) d \theta \\
& =2 \int_{0}^{\pi / 4}\left(1-\cos ^{2} 2 \theta\right) d \theta \\
& =2 \int_{0}^{\pi / 4} d \theta-2 \int_{0}^{\pi / 4} \cos ^{2} 2 \theta d \theta \\
& =\left.2 \theta\right|_{0} ^{\pi / 4}-\int_{0}^{\pi / 4}(1+\cos 4 \theta) d \theta \\
& =\pi / 2-\int_{0}^{\pi / 4} d \theta-\int_{0}^{\pi / 4} \cos 4 \theta d \theta \quad \text { Substitution: } \begin{array}{l}
w=4 \theta \\
d w=4 d \theta \quad \theta=0 \rightarrow w=0 \\
\\
\end{array}=\pi / 2-\pi / 4-\int_{0}^{\pi} \cos w d w \\
& =\pi / 4-\left.\sin w\right|_{0} ^{\pi}=\pi / 4
\end{aligned}
$$

An alternate solution would involve completing the square:

$$
\begin{aligned}
2 x-x^{2} & =-\left(x^{2}-2 x\right) \\
& =-\left(x^{2}-2 x+1-1\right) \\
& =-\left((x-1)^{2}-1\right) \\
& =1-(x-1)^{2}
\end{aligned}
$$

So the integral becomes:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2 x-x^{2}} d x & =\int_{0}^{1} \sqrt{1-(x-1)^{2}} d x \quad \text { Substitution: } \begin{array}{ll}
u=x-1 & x=0 \rightarrow u=-1 \\
d u=d x & x=1 \rightarrow u=0
\end{array} \\
& =\int_{-1}^{0} \sqrt{1-u^{2}} d u
\end{aligned}
$$

The integrand has a $\sqrt{a^{2}-u^{2}}$, so we should use the trig substitution:

$$
\begin{aligned}
& u=a \sin \theta=\sin \theta \\
& d u=\cos \theta d \theta \\
& \text { where } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}
\end{aligned}
$$

Instead of back substituting later, we can change the limits of this definite integral right now:
When $u=-1$, then $\theta=\arcsin (-1)=-\pi / 2$.

When $u=0$, then $\theta=\arcsin (0)=0$.
Now, we find expressions for the components of the integrand:

$$
\sqrt{1-u^{2}}=\sqrt{1-\sin ^{2} \theta}=\cos \theta
$$

And now we do the integral:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{2 x-x^{2}} d x & =\int_{-1}^{0} \sqrt{1-u^{2}} d u \\
& =\int_{-\pi / 2}^{0} \cos \theta \cos \theta d \theta \\
& =\frac{1}{2} \int_{-\pi / 2}^{0}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{2} \int_{-\pi / 2}^{0} d \theta+\frac{1}{2} \int_{-\pi / 2}^{0} \cos 2 \theta d \theta \quad \text { Substitution: } \begin{array}{l}
w=2 \theta \quad \theta=0 \rightarrow w=0 \\
d w=2 d \theta \quad \theta=-\pi / 2 \rightarrow w=-\pi
\end{array} \\
& =\left.\frac{1}{2} \theta\right|_{-\pi / 2} ^{0}+\frac{1}{4} \int_{-\pi}^{0} \cos w d w \\
& =\pi / 4+\left.\frac{1}{4} \sin w\right|_{-\pi} ^{0}=\pi / 4
\end{aligned}
$$

Example $\int \frac{\sqrt{1+x^{2}}}{x} d x$.
First, the square root suggests that a trig substitution might help. Let's try it! Let $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$. Therefore,

$$
\begin{aligned}
\int \frac{\sqrt{1+x^{2}}}{x} d x & =\int \frac{\sqrt{1+\tan ^{2} \theta}}{\tan \theta} \sec ^{2} \theta d \theta \\
& =\int \frac{\sec \theta}{\tan \theta} \sec ^{2} \theta d \theta \\
& =\int \frac{\sec ^{3} \theta}{\tan \theta} d \theta
\end{aligned}
$$

The first time I tried this integral, I converted everything to sines and cosines, then had to make a u-substitution, then had to do partial fractions! It worked, but it was a very long path to follow. That's OK, but I think there is something shorter that will get us to our destination.

Let's factor out a secant, and use $\sec ^{2} \theta=1+\tan ^{2} \theta$ to simplify:

$$
\begin{aligned}
\int \frac{\sqrt{1+x^{2}}}{x} d x & =\int \frac{\sec ^{3} \theta}{\tan \theta} d \theta \\
& =\int \frac{\sec \theta\left(\sec ^{2} \theta\right)}{\tan \theta} d \theta \\
& =\int \frac{\sec \theta\left(1+\tan ^{2} \theta\right)}{\tan \theta} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{\sec \theta}{\tan \theta} d \theta+\int \sec \theta \tan \theta d \theta \\
& =\int \csc \theta d \theta+\int \sec \theta \tan \theta d \theta
\end{aligned}
$$

The second integral is a basic form (although, probably not that common).

$$
\int \sec \theta \tan \theta d \theta=\sec \theta+c_{1}
$$

The first integral can be worked out using the same technique as was done for $\int \sec \theta d \theta$ in Section 7.2:

$$
\begin{aligned}
\int \csc \theta d \theta= & \int \csc \theta \frac{\csc \theta+\cot \theta}{\csc \theta+\cot \theta} d \theta \\
= & \int \frac{\csc ^{2} \theta+\csc \theta \cot \theta}{\csc \theta+\cot \theta} d \theta \\
& \text { Substitution: } u=\csc \theta+\cot \theta, \quad d u=\left(-\csc \theta \cot \theta-\csc ^{2} \theta\right) d \theta \\
= & -\int \frac{d u}{u} \\
= & -\ln |u|+c_{2} \\
= & -\ln |\csc \theta+\cot \theta|+c_{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\int \frac{\sqrt{1+x^{2}}}{x} d x & =\int \csc \theta d \theta+\int \sec \theta \tan \theta d \theta \\
& =-\ln |\csc \theta+\cot \theta|+\sec \theta+c
\end{aligned}
$$

We have used $c=c_{1}+c_{2}$. Now, all that is left is the backsubstitution. We began with $x=\tan \theta=\mathrm{opp} / \mathrm{adj}$, so use that

to construct a reference triangle.
1

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{\text { hyp }}{\mathrm{opp}}=\frac{\sqrt{1+x^{2}}}{x}, \quad \cot \theta=\frac{1}{\tan \theta}=\frac{1}{x}, \quad \sec \theta=\frac{1}{\cos \theta}=\frac{\text { hyp }}{\operatorname{adj}}=\frac{\sqrt{1+x^{2}}}{1}=\sqrt{1+x^{2}}
$$

The integral is therefore

$$
\begin{aligned}
\int \frac{\sqrt{1+x^{2}}}{x} d x & =-\ln \left|\frac{\sqrt{1+x^{2}}}{x}+\frac{1}{x}\right|+\sqrt{1+x^{2}}+c \\
& =-\ln \left|\frac{\sqrt{1+x^{2}}+1}{x}\right|+\sqrt{1+x^{2}}+c \\
& =\ln \left|\frac{x}{\sqrt{1+x^{2}}+1}\right|+\sqrt{1+x^{2}}+c
\end{aligned}
$$

