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Questions

Example
∫

1
x
√

x2 − 9
dx.

Example
∫ 1

0

√
2x− x2 dx.

Example
∫ √

1 + x2

x
dx.

Solutions

Example
∫

1
x
√

x2 − 9
dx.

The integrand contains
√

x2 − a2, so we should use the trig substitution:

x = a sec θ = 3 sec θ

dx = 3 sec θ tan θ dθ

where 0 < θ <
π

2
or π < θ <

3π

2

Now, we find expressions for the components of the integrand:

√
x2 − 9 =

√
9 sec2 θ − 9

= 3
√

sec2 θ − 1

= 3
√

tan2 θ

= 3| tan θ|
= 3 tan θ (since tan θ > 0 in our restricted domain for θ!)

x = 3 sec θ

And now we do the integral:

∫
dx

x
√

x2 − 9
=

∫
3 sec θ tan θ dθ

(3 sec θ)(3 tan θ)

=
1
3

∫
dθ

=
1
3
θ + c

=
1
3

arccos
(

3
x

)
+ c,

or =
1
3

arctan

(√
x2 − 9

3

)
+ c,

or =
1
3

arcsin

(√
x2 − 9

x

)
+ c,
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We could pick any one of the last three expressions for the integral. There are other expressions for the integral as well.

If you compare this with Mathematica’s result, you may think you have made an error. If you use the identity arctanx =
− arctan(1/x) + π/2, you can show the two results are the same.

Example
∫ 1

0

√
2x− x2 dx.

The integrand does not look like any of the forms we can use trig substitution on. We must therefore modify it before we
can use trig substitution.

∫ 1

0

√
2x− x2 dx =

∫ 1

0

√
x(2− x) dx

=
∫ 1

0

√
x
√

2− x dx

=
∫ 1

0

√
x

√
2− (

√
x)2 dx Substitution:

u =
√

x x = 0 → u = 0
du = 1

2
dx√

x
x = 1 → u = 1

= 2
∫ 1

0

u2
√

2− u2 du

the integrand has a
√

a2 − u2, so we should use the trig substitution:

u = a sin θ =
√

2 sin θ

du =
√

2 cos θ dθ

where
−π

2
≤ θ ≤ π

2

Instead of back substituting later, we can change the limits of this definite integral right now:
When u = 0, then θ = arcsin 0 = 0.
When u = 1, then θ = arcsin(1/

√
2) = π/4.

Now, we find expressions for the components of the integrand:

√
2− u2 =

√
2− 2 sin2 θ

=
√

2
√

1− sin2 θ

=
√

2
√

cos2 θ

=
√

2| cos θ|
=

√
2 cos θ (since θ runs from 0 to π/4, cos θ > 0)

And now we do the integral:

∫ 1

0

√
2x− x2 dx = 2

∫ 1

0

u2
√

2− u2 du

= 2
∫ π/4

0

(2 sin2 θ)(
√

2 cos θ)(
√

2 cos θ dθ)

= 8
∫ π/4

0

sin2 θ cos2 θ dθ
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Now we need to use some trig identities to do this trig integral:

∫ 1

0

√
2x− x2 dx = 8

∫ π/4

0

sin2 θ cos2 θ dθ

= 2
∫ π/4

0

(1− cos 2θ)(1 + cos 2θ) dθ

= 2
∫ π/4

0

(1− cos2 2θ) dθ

= 2
∫ π/4

0

dθ − 2
∫ π/4

0

cos2 2θ dθ

= 2θ
∣∣∣π/4

0
−
∫ π/4

0

(1 + cos 4θ) dθ

= π/2−
∫ π/4

0

dθ −
∫ π/4

0

cos 4θ dθ Substitution:
w = 4θ θ = 0 → w = 0
dw = 4dθ θ = π/4 → w = π

= π/2− π/4−
∫ π

0

cos w dw

= π/4− sinw
∣∣∣π
0

= π/4

An alternate solution would involve completing the square:

2x− x2 = −(x2 − 2x)
= −(x2 − 2x + 1− 1)
= −((x− 1)2 − 1)
= 1− (x− 1)2

So the integral becomes:

∫ 1

0

√
2x− x2 dx =

∫ 1

0

√
1− (x− 1)2 dx Substitution:

u = x− 1 x = 0 → u = −1
du = dx x = 1 → u = 0

=
∫ 0

−1

√
1− u2 du

The integrand has a
√

a2 − u2, so we should use the trig substitution:

u = a sin θ = sin θ

du = cos θ dθ

where
−π

2
≤ θ ≤ π

2

Instead of back substituting later, we can change the limits of this definite integral right now:
When u = −1, then θ = arcsin(−1) = −π/2.
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When u = 0, then θ = arcsin(0) = 0.
Now, we find expressions for the components of the integrand:

√
1− u2 =

√
1− sin2 θ = cos θ

And now we do the integral:

∫ 1

0

√
2x− x2 dx =

∫ 0

−1

√
1− u2 du

=
∫ 0

−π/2

cos θ cos θ dθ

=
1
2

∫ 0

−π/2

(1 + cos 2θ) dθ

=
1
2

∫ 0

−π/2

dθ +
1
2

∫ 0

−π/2

cos 2θ dθ Substitution:
w = 2θ θ = 0 → w = 0
dw = 2dθ θ = −π/2 → w = −π

=
1
2
θ
∣∣∣0
−π/2

+
1
4

∫ 0

−π

cos w dw

= π/4 +
1
4

sinw
∣∣∣0
−π

= π/4

Example
∫ √

1 + x2

x
dx.

First, the square root suggests that a trig substitution might help. Let’s try it! Let x = tan θ, so dx = sec2 θdθ. Therefore,

∫ √
1 + x2

x
dx =

∫ √
1 + tan2 θ

tan θ
sec2 θ dθ

=
∫

sec θ

tan θ
sec2 θ dθ

=
∫

sec3 θ

tan θ
dθ

The first time I tried this integral, I converted everything to sines and cosines, then had to make a u-substitution, then
had to do partial fractions! It worked, but it was a very long path to follow. That’s OK, but I think there is something
shorter that will get us to our destination.

Let’s factor out a secant, and use sec2 θ = 1 + tan2 θ to simplify:

∫ √
1 + x2

x
dx =

∫
sec3 θ

tan θ
dθ

=
∫

sec θ(sec2 θ)
tan θ

dθ

=
∫

sec θ(1 + tan2 θ)
tan θ

dθ
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=
∫

sec θ

tan θ
dθ +

∫
sec θ tan θ dθ

=
∫

csc θ dθ +
∫

sec θ tan θ dθ

The second integral is a basic form (although, probably not that common).

∫
sec θ tan θ dθ = sec θ + c1

The first integral can be worked out using the same technique as was done for
∫

sec θ dθ in Section 7.2:

∫
csc θ dθ =

∫
csc θ

csc θ + cot θ

csc θ + cot θ
dθ

=
∫

csc2 θ + csc θ cot θ

csc θ + cot θ
dθ

Substitution: u = csc θ + cot θ, du = (− csc θ cot θ − csc2 θ) dθ

= −
∫

du

u

= − ln |u|+ c2

= − ln | csc θ + cot θ|+ c2

Therefore, we have

∫ √
1 + x2

x
dx =

∫
csc θ dθ +

∫
sec θ tan θ dθ

= − ln | csc θ + cot θ|+ sec θ + c

We have used c = c1 + c2. Now, all that is left is the backsubstitution. We began with x = tan θ = opp/adj, so use that

to construct a reference triangle.
�

�
�

�
�

√
1 + x2

1

x

θ

csc θ =
1

sin θ
=

hyp
opp

=
√

1 + x2

x
, cot θ =

1
tan θ

=
1
x

, sec θ =
1

cos θ
=

hyp
adj

=
√

1 + x2

1
=
√

1 + x2.

The integral is therefore

∫ √
1 + x2

x
dx = − ln

∣∣∣∣∣
√

1 + x2

x
+

1
x

∣∣∣∣∣+√1 + x2 + c

= − ln

∣∣∣∣∣
√

1 + x2 + 1
x

∣∣∣∣∣+√1 + x2 + c

= ln
∣∣∣∣ x√

1 + x2 + 1

∣∣∣∣+√1 + x2 + c


