Questions

Example Find the volume of the solid that is obtained by rotating the region below $y = x^3$ and above 0 < x < 2, about the x-axis.

Example Find the volume of the solid that is obtained by rotating the region below $y = x^3$ and above 0 < x < 2, about the *y*-axis.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the x-axis.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the line x = -1.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the x-axis.

Example Find the volume of the solid that is the cap of a sphere with radius r and height h.

Solutions

Example Find the volume of the solid that is obtained by rotating the region below $y = x^3$ and above 0 < x < 2, about the x-axis.

Solution First, sketch the situation:

Integration limits: if 0 < x < 2, the circle sweeps out the volume. We integrate with respect to x. Radius of circle $= y = x^3$. Area of circle $= \pi y^2 = \pi x^6$.

Volume =
$$\int_{a}^{b}$$
 (area of circle) $dx = \pi \int_{0}^{2} x^{6} dx = \pi \frac{x^{7}}{7} \Big|_{0}^{2} = \frac{128\pi}{7}$

Example Find the volume of the solid that is obtained by rotating the region below $y = x^3$ and above 0 < x < 2, about the *y*-axis.

Solution First, sketch the situation:

Integration limits: if 0 < y < 8, the washer sweeps out the volume. We integrate with respect to y. Radius of inner circle = $x = y^{1/3}$. Radius of outer circle = 2. Area of washer = $\pi [(\text{radius outer circle})^2 - (\text{radius of inner circle})^2] = \pi [4 - y^{2/3}]$.

Volume =
$$\int_{c}^{d} (\text{area of washer}) \, dy = \pi \int_{0}^{8} (4 - y^{2/3}) \, dy = \pi \left(4y - \frac{y^{5/3}}{5/3}\right)_{0}^{8}$$

= $\pi \left(32 - \frac{3}{5}8^{5/3}\right) = \pi \left(32 - \frac{96}{5}\right) = \frac{64\pi}{5}$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the x-axis.

Solution First, sketch the situation:

Integration limits: if 0 < x < 1, the washer sweeps out the volume. We integrate with respect to x. Radius of outer circle $= y = \sqrt{x}$. Radius of inner circle $= y = x^2$. Area of washer $= \pi [$ (outer radius)² - (inner radius)²] $= \pi (x - x^4)$.

Volume =
$$\int_{a}^{b}$$
 (area of washer) $dx = \int_{0}^{1} \pi (x - x^{4}) dx = \pi \left(\frac{x^{2}}{2} - \frac{x^{5}}{5}\right)_{0}^{1} = \frac{3}{10}\pi$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the line x = -1.

Solution First, sketch the situation:

Integration limits: if 0 < y < 1, the washer sweeps out the volume. We integrate with respect to y. Radius of outer circle = $1 + x = 1 + \sqrt{y}$.

Radius of inner circle = $1 + x = 1 + y^2$. This creates a washer: area of washer = π [(outer radius)² - (inner radius)²] = $\pi((1 + \sqrt{y})^2 - (1 + y^2)^2)$.

$$\begin{aligned} \text{Volume} &= \int_0^1 \pi ((1+\sqrt{y})^2 - (1+y^2)^2) \, dy \\ &= \pi \int_0^1 \left(2\sqrt{y} + y - 2y^2 - y^4 \right) \, dy = \pi \left(2\frac{y^{3/2}}{3/2} + \frac{y^2}{2} - 2\frac{y^3}{3} - \frac{y^5}{5} \right)_0^1 = \pi \left(\frac{4}{3} + \frac{1}{2} - \frac{2}{3} - \frac{1}{5} \right) = \frac{29}{30}\pi \end{aligned}$$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y = x^2$, $x = y^2$ about the x-axis.

Solution First, sketch the situation:

Integration limits: if 0 < x < 1, the washer sweeps out the volume. We integrate with respect to x. Radius of outer circle $= y = \sqrt{x}$. Radius of inner circle $= y = x^2$. Area of washer $= \pi [$ (outer radius)² - (inner radius)²] $= \pi (x - x^4)$.

Volume =
$$\int_{a}^{b} (\text{area of washer}) \, dx = \int_{0}^{1} \pi (x - x^4) \, dx = \pi \left(\frac{x^2}{2} - \frac{x^5}{5}\right)_{0}^{1} = \frac{3}{10}\pi$$

Example Find the volume of the solid that is the cap of a sphere with radius r and height h.

Solution First, sketch the situation. Rotating the shaded region about the y axis will produce the cap of the sphere with the required dimensions.

Integration limits: if r - h < y < r, the circle sweeps out the volume. We integrate with respect to y. Radius of circle $= x = \sqrt{r^2 - y^2}$. Area of circle $= \pi (radius)^2 = \pi (r^2 - y^2)$.

Volume =
$$\int_{a}^{b} (\text{area of circle}) dy$$

= $\int_{r-h}^{r} \pi (r^{2} - y^{2}) dy$
= $\pi \left(r^{2}y - \frac{y^{3}}{3} \right)_{r-h}^{r}$
= $\pi \left[\left(r^{2}(r) - \frac{r^{3}}{3} \right) - \left(r^{2}(r-h) - \frac{(r-h)^{3}}{3} \right) \right]$
= $\pi \left[\frac{2r^{3}}{3} - r^{3} + r^{2}h + \frac{1}{3}(r^{3} - 3hr^{2} + 3h^{2}r - h^{3}) \right]$
= $\pi \left[-\frac{r^{3}}{3} + r^{2}h + \frac{r^{3}}{3} - hr^{2} + h^{2}r - \frac{h^{3}}{3} \right]$
= $\pi \left[h^{2}r - \frac{h^{3}}{3} \right]$
= $\pi h^{2} \left[r - \frac{h}{3} \right]$