Questions

Example Find the volume of the solid that is obtained by rotating the region below $y=x^{3}$ and above $0<x<2$, about the x-axis.

Example Find the volume of the solid that is obtained by rotating the region below $y=x^{3}$ and above $0<x<2$, about the y-axis.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the x-axis.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the line $x=-1$.

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the x-axis.

Example Find the volume of the solid that is the cap of a sphere with radius r and height h.

Solutions

Example Find the volume of the solid that is obtained by rotating the region below $y=x^{3}$ and above $0<x<2$, about the x-axis.

Solution First, sketch the situation:

Integration limits: if $0<x<2$, the circle sweeps out the volume. We integrate with respect to x.
Radius of circle $=y=x^{3}$.
Area of circle $=\pi y^{2}=\pi x^{6}$.

$$
\text { Volume }=\int_{a}^{b} \text { (area of circle) } d x=\pi \int_{0}^{2} x^{6} d x=\left.\pi \frac{x^{7}}{7}\right|_{0} ^{2}=\frac{128 \pi}{7}
$$

Example Find the volume of the solid that is obtained by rotating the region below $y=x^{3}$ and above $0<x<2$, about the y-axis.

Solution First, sketch the situation:

Integration limits: if $0<y<8$, the washer sweeps out the volume. We integrate with respect to y.
Radius of inner circle $=x=y^{1 / 3}$.
Radius of outer circle $=2$.
Area of washer $=\pi\left[(\text { radius outer circle })^{2}-(\text { radius of inner circle })^{2}\right]=\pi\left[4-y^{2 / 3}\right]$.

$$
\begin{aligned}
\text { Volume } & =\int_{c}^{d}(\text { area of washer }) d y=\pi \int_{0}^{8}\left(4-y^{2 / 3}\right) d y=\pi\left(4 y-\frac{y^{5 / 3}}{5 / 3}\right)_{0}^{8} \\
& =\pi\left(32-\frac{3}{5} 8^{5 / 3}\right)=\pi\left(32-\frac{96}{5}\right)=\frac{64 \pi}{5}
\end{aligned}
$$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the x-axis.

Solution First, sketch the situation:

Integration limits: if $0<x<1$, the washer sweeps out the volume. We integrate with respect to x.
Radius of outer circle $=y=\sqrt{x}$.
Radius of inner circle $=y=x^{2}$.
Area of washer $=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]=\pi\left(x-x^{4}\right)$.

$$
\text { Volume }=\int_{a}^{b}(\text { area of washer }) d x=\int_{0}^{1} \pi\left(x-x^{4}\right) d x=\pi\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)_{0}^{1}=\frac{3}{10} \pi
$$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the line $x=-1$.

Solution First, sketch the situation:

Integration limits: if $0<y<1$, the washer sweeps out the volume. We integrate with respect to y. Radius of outer circle $=1+x=1+\sqrt{y}$.

Radius of inner circle $=1+x=1+y^{2}$.
This creates a washer: area of washer $=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]=\pi\left((1+\sqrt{y})^{2}-\left(1+y^{2}\right)^{2}\right)$.

$$
\begin{aligned}
& \text { Volume }=\int_{0}^{1} \pi\left((1+\sqrt{y})^{2}-\left(1+y^{2}\right)^{2}\right) d y \\
& =\pi \int_{0}^{1}\left(2 \sqrt{y}+y-2 y^{2}-y^{4}\right) d y=\pi\left(2 \frac{y^{3 / 2}}{3 / 2}+\frac{y^{2}}{2}-2 \frac{y^{3}}{3}-\frac{y^{5}}{5}\right)_{0}^{1}=\pi\left(\frac{4}{3}+\frac{1}{2}-\frac{2}{3}-\frac{1}{5}\right)=\frac{29}{30} \pi
\end{aligned}
$$

Example Find the volume of the solid that is obtained by rotating the region bounded by $y=x^{2}, x=y^{2}$ about the x-axis.

Solution First, sketch the situation:

Integration limits: if $0<x<1$, the washer sweeps out the volume. We integrate with respect to x.
Radius of outer circle $=y=\sqrt{x}$.
Radius of inner circle $=y=x^{2}$.
Area of washer $=\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]=\pi\left(x-x^{4}\right)$.

$$
\text { Volume }=\int_{a}^{b}(\text { area of washer }) d x=\int_{0}^{1} \pi\left(x-x^{4}\right) d x=\pi\left(\frac{x^{2}}{2}-\frac{x^{5}}{5}\right)_{0}^{1}=\frac{3}{10} \pi
$$

Example Find the volume of the solid that is the cap of a sphere with radius r and height h.
Solution First, sketch the situation. Rotating the shaded region about the y axis will produce the cap of the sphere with the required dimensions.

Integration limits: if $r-h<y<r$, the circle sweeps out the volume. We integrate with respect to y. Radius of circle $=x=\sqrt{r^{2}-y^{2}}$.
Area of circle $=\pi(\text { radius })^{2}=\pi\left(r^{2}-y^{2}\right)$.

$$
\begin{aligned}
\text { Volume } & =\int_{a}^{b}(\text { area of circle }) d y \\
& =\int_{r-h}^{r} \pi\left(r^{2}-y^{2}\right) d y \\
& =\pi\left(r^{2} y-\frac{y^{3}}{3}\right)_{r-h}^{r} \\
& =\pi\left[\left(r^{2}(r)-\frac{r^{3}}{3}\right)-\left(r^{2}(r-h)-\frac{(r-h)^{3}}{3}\right)\right] \\
& =\pi\left[\frac{2 r^{3}}{3}-r^{3}+r^{2} h+\frac{1}{3}\left(r^{3}-3 h r^{2}+3 h^{2} r-h^{3}\right)\right] \\
& =\pi\left[-\frac{r^{3}}{3}+r^{2} h+\frac{r^{3}}{3}-h r^{2}+h^{2} r-\frac{h^{3}}{3}\right] \\
& =\pi\left[h^{2} r-\frac{h^{3}}{3}\right] \\
& =\pi h^{2}\left[r-\frac{h}{3}\right]
\end{aligned}
$$

