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Questions

Example Is the series
∞∑

n=1

(−3)n

n3
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=0

(−3)n

n!
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=1

(−1)n

5 + n
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=1

(−1)n−1

n!
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=1

e−nn! absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=2

(−1)n+1 n22n

n!
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=2

(−1)n

n lnn
absolutely convergent, conditionally convergent, or divergent?

Example Is the series
∞∑

n=1

(
n2 + 1
2n2 + 1

)n

absolutely convergent, conditionally convergent, or divergent?

Example Show that
∞∑

n=0

xn

n!
converges for all x. Deduce that lim

n→∞

xn

n!
= 0 for all x.

Solutions

Example Is the series
∞∑

n=1

(−3)n

n3
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−3)n

n3
.

The an contains a power involving n, so we should try the root test.

lim
n→∞

(|an|)1/n = lim
n→∞

(∣∣∣∣ (−3)n

n3

∣∣∣∣)1/n

= lim
n→∞

(∣∣∣∣3n

n3

∣∣∣∣)1/n

= lim
n→∞

3
n3/n
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So we need to know what happens to n3/n as n →∞. This will turn out to require logarithms to solve.

lim
n→∞

n3/n −→ ∞0 indeterminate power

y = n3/n

ln y = lnn3/n =
3
n

lnn

lim
n→∞

ln y = lim
n→∞

3
n

lnn −→ ∞
∞

indeterminate quotient

Now we should convert to the reals, since we want to use L’Hospital’s Rule to evaluate this integral.

lim
x→∞

ln y = 3 lim
x→∞

lnx

x
−→ ∞

∞
indeterminate quotient

= lim
x→∞

1/x

1
using L’Hospital’s Rule

= 0

We want the limit

lim
x→∞

y = lim
x→∞

eln y = elimx→∞ ln y = e0 = 1

So, since we had constructed the real function x3/x from the discrete n3/n, we can also say

lim
n→∞

n3/n = 1.

Therefore, we have

lim
n→∞

(|an|)1/n = lim
n→∞

3
n3/n

=
3
1

= 3 > 1

so the series
∑

an diverges by the root test.

You could also use the ratio test to show the series diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−3)n+1

(n + 1)3
· n3

(−3)n

∣∣∣∣
= lim

n→∞

3n3

(n + 1)3

= 3 lim
n→∞

(
n

n + 1

)3

= 3 lim
n→∞

(
1

1 + 1/n

)3

= 3
(

1
1 + 0

)3

= 3 > 1

The series
∑

an diverges by the ratio test.
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Example Is the series
∞∑

n=0

(−3)n

n!
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−3)n

n!
.

The an contains a factorial, so we should try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−3)n+1

(n + 1)!
· n!
(−3)n

∣∣∣∣
= lim

n→∞

3
(n + 1)

= 0 < 1

The series
∑

an is absolutely convergent by the ratio test.

Example Is the series
∞∑

n=1

(−1)n

5 + n
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−1)n

5 + n
.

The an is alternating, so we should try the alternating series test.

For the alternating series test, we also need to identify bn = |an| =
1

5 + n
.

Since bn+1 =
1

5 + n + 1
=

1
6 + n

<
1

5 + n
= bn the first condition for the alternating series test is satisfied.

Since lim
n→∞

bn = lim
n→∞

1
5 + n

= 0, the second condition for the alternating series test is satisfied.

Therefore, by the alternating series test, the series
∑

an converges.

But we need to check the convergence of the series
∑

bn to determine if the series
∑

an is conditionally convergent (that
is, convergent due to the fact that it alternates).

Let’s use the ratio test to check the series
∑

bn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

5 + n

6 + n

= lim
n→∞

5/n + 1
6/n + 1

=
0 + 1
0 + 1

= 1

so the ratio test fails. All this means is we can’t use it.
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Let’s try a limit comparison test instead. Let’s compare to the divergent p-series
∑

cn =
∑

1/n.

lim
n→∞

cn

bn
= lim

n→∞

5 + n

n
= lim

n→∞

(
5
n

+ 1
)

= 1 > 0 and finite.

Therefore, the since the comparison series
∑

cn was divergent, the series
∑

bn is also divergent.

Therefore,
∑

an is conditionally convergent since
∑

an converges and
∑
|an| =

∑
bn diverges.

Example Is the series
∞∑

n=1

(−1)n−1

n!
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−1)n−1

n!
.

The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
1

(n+1)!

)
(

1
n!

)
= lim

n→∞

n!
(n + 1)!

= lim
n→∞

1
n + 1

= 0 < 1

so the series
∑

an is absolutely convergent by the ratio test.

Example Is the series
∞∑

n=1

e−nn! absolutely convergent, conditionally convergent, or divergent?

We identify an = e−nn!.

The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

e−(n+1)(n + 1)!
e−nn!

= lim
n→∞

e−1(n + 1)

=
1
e

lim
n→∞

(n + 1)

= ∞ > 1

so the series
∑

an diverges by the ratio test.

Example Is the series
∞∑

n=2

(−1)n+1 n22n

n!
absolutely convergent, conditionally convergent, or divergent?

We identify an = (−1)n+1 n22n

n!
.
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The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)22n+1

(n + 1)!
· n!
n22n

= lim
n→∞

2(n + 1)2

(n + 1)n2

= 2 lim
n→∞

n + 1
n2

= 2 lim
n→∞

(
1
n

+
1
n2

)
= 2(0 + 0) = 0 < 1

so the series
∑

an is absolutely convergent by the ratio test.

Example Is the series
∞∑

n=2

(−1)n

n lnn
absolutely convergent, conditionally convergent, or divergent?

We identify an =
(−1)n

n lnn
.

If we try the ratio test, it will fail.

Instead, since an is alternating, so we should try the alternating series test.

For the alternating series test, we also need to identify bn = |an| =
1

n lnn
.

Since bn+1 =
1

(n + 1) ln(n + 1)
<

1
n lnn

= bn the first condition for the alternating series test is satisfied.

Since lim
n→∞

bn = lim
n→∞

1
n lnn

= 0, the second condition for the alternating series test is satisfied.

Therefore, by the alternating series test, the series
∑

an converges.

But we need to check the convergence of the series
∑

bn to determine if the series
∑

an is conditionally convergent (that
is, convergent due to the fact that it alternates).

Use the integral test to determine whether the series
∑

bn is convergent or divergent. The integral test requires that we
work with f(x), where
1) f(n) = an,
and on the interval [2,∞), f(x) is:
1) continuous,
2) positive,
3) decreasing.

Here, f(x) =
1

x lnx
, which is continuous, decreasing and positive on the interval [2,∞).
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We can therefore apply the integral test to the series
∞∑

n=2

1
n lnn

.

∫ ∞
2

f(x) dx =
∫ ∞

2

1
x lnx

dx

= lim
t→∞

∫ t

2

1
x lnx

dx

Substitution:
u = ln x when x = 2, u = ln 2
du = 1

xdx when x = t, u = ln t

= lim
t→∞

∫ ln t

ln 2

du

u

= lim
t→∞

lnu
∣∣∣ln t

ln 3

=
1
2

lim
t→∞

(ln ln t− ln ln 2)

= ∞, diverges, since ln ln t →∞ as t →∞.

Since the integral diverges, the series
∞∑

n=2

1
n lnn

diverges by the integral test. Therefore, the series
∞∑

n=2

1
n lnn

diverges.

Therefore,
∑

an is conditionally convergent since
∑

an converges and
∑
|an| =

∑
bn diverges.

Example Is the series
∞∑

n=1

(
n2 + 1
2n2 + 1

)n

absolutely convergent, conditionally convergent, or divergent?

We identify an =
(

n2 + 1
2n2 + 1

)n

.

The an contains a power involving n, so we should try the root test.

lim
n→∞

(|an|)1/n = lim
n→∞

(∣∣∣∣( n2 + 1
2n2 + 1

)n∣∣∣∣)1/n

= lim
n→∞

((
n2 + 1
2n2 + 1

)n)1/n

= lim
n→∞

n2 + 1
2n2 + 1

= lim
n→∞

1 + 1/n2

2 + 1/n2

=
1 + 0
2 + 0

=
1
2

< 1

so the series
∑

an is absolutely convergent by the root test.

Example Show that
∞∑

n=0

xn

n!
converges for all x. Deduce that lim

n→∞

xn

n!
= 0 for all x.
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We identify an =
xn

n!
.

The an contains a factorial, so we should first try the ratio test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n + 1)!
· n!
xn

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n + 1

∣∣∣∣
= |x| lim

n→∞

1
n + 1

= |x|(0) = 0 < 1

so the series
∑

an is absolutely convergent by the ratio test, for any value of x.

Since the series converges, it must be true that the terms in the series are approaching zero (by Theorem 11.2.6). Therefore,
we know that for all values of x,

lim
n→∞

xn

n!
= 0.

This is an important result that we will use later. Check out Equation 11.10.10.


