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Questions

Example: The Alternating Harmonic Series Does the series
∞∑

n=1

(−1)n−1

n
converge or diverge?

Example Does the series
∞∑

n=2

(−1)n

lnn
converge or diverge?

Example Does the series
∞∑

n=1

(−1)n−1 lnn

n
converge or diverge?

Example How many terms are required to find the sum of the series

∞∑
n=1

(−1)n+1

n4

to 0.001 accuracy?

Example Test the series for convergence or divergence

∞∑
n=1

sin(nπ/2)
n!

.

Solutions

Example: The Alternating Harmonic Series Does the series
∞∑

n=1

(−1)n−1

n
converge or diverge?

Since this is an alternating series, we should use the alternating series test. First, we identify

an = (−1)n−1 1
n

, bn = |an| =
1
n

.

Since 1/(n + 1) < 1/n, we have that bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/n = 0.

So the two conditions of the alternating series test are satisfied, and the series
∞∑

n=1

(−1)n−1

n
converges.

NOTE: The series
∑∞

n=1 bn =
∑∞

n=1 1/n is divergent. We can prove this by the integral test. This isn’t asked for in this
problem, but let’s prove it, because it is fun!

The integral test requires that we work with f(x), where
1) f(n) = bn,
and on the interval [1,∞), f(x) must be:
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1) continuous,
2) positive,
3) decreasing.

So f(x) = 1/x, which is continuous, positive, and decreasing on [1,∞).

∫ ∞

1

f(x) dx =
∫ ∞

1

1
x

dx

= lim
b→∞

∫ b

1

1
x

dx

= lim
b→∞

lnx|b1
= lim

b→∞
(ln b− ln 1)

= lim
b→∞

ln b

= ∞

So the integral diverges. Therefore,
∑∞

n=1 1/n diverges by the integral theorem.

A series which has
∑

an convergent, but
∑
|an| divergent is called conditionally convergent, since the convergence is due

to the cancellation that occurs by change in sign of the terms. This is a property we will look at more deeply in Section
11.6.

Example Does the series
∞∑

n=2

(−1)n

lnn
converge or diverge?

Since this is an alternating series, we should use the alternating series test. First, we identify

an = (−1)n 1
lnn

, bn = |an| =
1

lnn
.

Since ln(n + 1) > lnn −→ 1/(ln(n + 1)) < 1/ lnn, we have bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/ lnn = 0.

So the two conditions of the alternating series test are satisfied, and the series
∞∑

n=2

(−1)n

lnn
converges.

Example (11.5.14) Does the series
∞∑

n=1

(−1)n−1 lnn

n
converge or diverge?

Since this is an alternating series, we should use the alternating series test. First, we identify

an = (−1)n−1 lnn

n
, bn = |an| =

lnn

n
.

We need to show that bn+1 < bn, which is not obvious from what we have for bn, since both the numerator and denominator
are increasing.
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However, if a function f(x) is decreasing, then it must be true that f ′(x) < 0. If we can show that f(x) =
lnx

x
has

f ′(x) < 0, then since f(n) = bn, we will have shown that bn+1 < bn.

Let’s take the derivative of f(x):

d

dx
f(x) =

d

dx

lnx

x
=

1− lnx

x2

For this to be less than zero, we require 1− lnx < 0 −→ x > e. This will certainly be true if x > 3, since e ∼ 2.71828.

Therefore, bn+1 < bn for n = 3, 4, 5, . . ., so the terms are eventually decreasing.

Also, we need to show that limn→∞ bn = limn→∞
ln n
n = 0. Again, this isn’t obvious, since direct substitution leads to an

indeterminant quotient. We will have to switch to the continuous counterpart so we can use l’Hospital’s rule.

lim
x→∞

f(x) = lim
x→∞

lnx

x
→ ∞
∞

indeterminant quotient, use l’Hospital’s rule

= lim
x→∞

d
dx lnx

d
dxx

= lim
x→∞

1
x

= 0

Therefore, since limx→∞ f(x) = 0, and f(n) = bn, we have limn→∞ bn = 0.

We have shown that for bn = |an|, limn→∞ bn = 0 and bn+1 ≤ bn, so the series
∑

an converges by the alternating series
test.

Example How many terms are required to find the sum of the series

∞∑
n=1

(−1)n+1

n4

to 0.001 accuracy?

First, we have to check that the series converges by the alternating series test. Then we can use the remainder estimate
for the alternating series test.

Here, we have

an =
(−1)n+1

n4
, bn =

1
n4

.

Since 1/(n + 1)4 < 1/n4, we have that bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.

Secondly, we have that limn→∞ bn = limn→∞ 1/n4 = 0.

So the two conditions of the alternating series test are satisfied, and the series
∑∞

n=1
(−1)n−1

n4 converges.
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The remainder estimate for the alternating series test tells us that if we approximate the series sum s by the partial sum
sn, the error will be

|Rn| ≤ bn+1.

n bn

1 1.0
2 0.0625
3 0.0123457
4 0.003906
5 0.0016
6 0.00077

Since b6 < 0.001, we can say that

|Rn| ≤ bn+1

|R5| ≤ b6 = 0.00077

So using the first five terms will produce an accuracy of 0.001.

Example Test the series for convergence or divergence

∞∑
n=1

sin(nπ/2)
n!

.

Although this doesn’t initially look like an alternating series, it is an alternating series since the sine function alternates

∞∑
n=1

sin(nπ/2)
n!

= 1 + 0− 1
6

+ 0 +
1

120
+ 0− 1

5040
+ . . . = 1− 1

6
+

1
120

− 1
5040

+ . . . .

We therefore have

an =
sin(nπ/2)

n!

and since

∞∑
i=1

bn =
∞∑

i=1

∣∣∣∣ sin(nπ/2)
n!

∣∣∣∣ = 1 +
1
6

+
1

120
+

1
5040

+ . . .

=
∞∑

i=1

1
(2n− 1)!

−→ bn =
1

(2n− 1)!

Since
1

(2(n + 1)− 1)!
=

1
(2n + 1)!

<
1

(2n− 1)!
, we have that bn+1 < bn, so the condition bn+1 ≤ bn is satisfied.
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Secondly, we have that limn→∞ bn = limn→∞ 1/(2n− 1)! = 0.

So the two conditions of the alternating series test are satisfied, and the series
∑∞

n=1
sin(nπ/2)

n! converges.


