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Example Find the Taylor series of f(x) = e−x about x = 0.

The center of our Taylor series will be a = 0. This means it could be called a MacLaurin series.

Let’s construct a table which will give us the derivatives, and enable us to calculate f (n)(a). We will want the general
form, so we should try and write things in ways in which the pattern becomes evident.

n f (n)(x) f (n)(a) = f (n)(0)
0 e−x 1
1 −e−x −1
2 +e−x +1
3 −e−x −1
...

...
...

n (−1)ne−x (−1)n

So we can see that the general form is f (n)(0) = (−1)n, since if we take an even derivative we get a positive number, and
if we take an odd derivative the number is negative.

cn =
f (n)(0)

n!
=

(−1)n

n!

The Taylor series is given by

e−x =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

(−1)n

n!
xn, |x| < R.

Now we want to find the radius of convergence, R. We can do this using the ratio test, where an =
(−1)n

n!
xn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1xn+1

(n + 1)!
· n!
(−1)nxn

∣∣∣∣
= lim

n→∞

∣∣∣∣x n!
(n + 1)!

∣∣∣∣
= |x| lim

n→∞

1
n + 1

= |x| · 0 = 0 < 1 for all x.

So the series is absolutely convergent for all values of x, which means R = ∞.

e−x =
∞∑

n=0

(−1)n

n!
xn, x ∈ (−∞,∞).

This can be checked in Mathematica using:

f[x_] = Exp[-x]
Series[f[x], {x, 0, 5}]
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Figure 1: Plots of f(x) = e−x (red) and the Taylor polynomial approximation of order 2 centered at a = 2, T2(x) =
2∑

n=0

(−1)n

n!
xn = 1− x +

x2

2
(blue).

Example Find the Taylor series of f(x) = e−x about x = 3.

The center of our Taylor series will be a = 3.

Let’s construct a table which will give us the derivatives, and enable us to calculate f (n)(a).

n f (n)(x) f (n)(a) = f (n)(3)
0 e−x 1e−3

1 −e−x −1e−3

2 +e−x +1e−3

3 −e−x −1e−3

...
...

...
n (−1)ne−x (−1)ne−3

So we can see that the general form is f (n)(3) = (−1)ne−3.

cn =
f (n)(0)

n!
=

(−1)n

e3n!

The Taylor series is given by

e−x =
∞∑

n=0

f (n)(0)
n!

(x− a)n =
∞∑

n=0

(−1)n

e3n!
(x− 3)n, |x− 3| < R.

Now we want to find the radius of convergence, R. We can do this using the ratio test, where
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an =
(−1)n

e3n!
(x− 3)n.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(x− 3)n+1

e3(n + 1)!
· e3n!
(−1)n(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(x− 3)
n!

(n + 1)!

∣∣∣∣
= |x− 3| lim

n→∞

1
n + 1

= |x− 3| · 0 = 0 < 1 for all x.

So the series is absolutely convergent for all values of x, which means R = ∞.

e−x =
∞∑

n=0

(−1)n

e3n!
(x− 3)n, x ∈ (−∞,∞).

This can be checked in Mathematica using:

f[x_] = Exp[-x]
Series[f[x], {x, 3, 5}]

Figure 2: Plots of f(x) = e−x (red) and the two Taylor polynomial approximations of order 2, one centered at a = 0
(blue) and the other centered at a = 3 (green).

Example 11.10.12 Find the Taylor series of f(x) = lnx about x = 2.

The center of our Taylor series will be a = 2.

Let’s construct a table which will give us the derivatives, and enable us to calculate f (n)(a).
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n f (n)(x) f (n)(a) = f (n)(2)
0 lnx ln 2
1 x−1 1/2
2 −x−2 −1/22

3 +2x−3 +2/23

4 −2 · 3x−4 −2 · 3/24

...
...

...

n 6= 0 (−1)n+1(n− 1)!
1
xn

(−1)n+1(n− 1)!
1
2n

So we can see that the general form is f (n)(2) = (−1)n+1(n− 1)! 1
2n if n 6= 0, and f (0)(2) = ln 2. Since the form changes,

we will have to pull the n = 0 term out of our sum.

cn =
f (n)(2)

n!
=

(−1)n+1(n− 1)! 1
2n

n!
=

(−1)n+1 1
2n

n
, n 6= 0; c0 = ln 2

The Taylor series is given by

lnx = ln 2 +
∞∑

n=1

f (n)(2)
n!

(x− 2)n = ln 2 +
∞∑

n=1

(−1)n+1

2nn
(x− 2)n, |x− 2| < R.

Now we want to find the radius of convergence, R. We can do this using the ratio test, where an =
(−1)n+1

2nn
(x− 2)n.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2(x− 2)n+1

2n+1(n + 1)
· 2nn

(−1)n+1(x− 2)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(x− 2)n+1−n2n−n−1 · n

n + 1

∣∣∣∣
=

|x− 2|
2

lim
n→∞

n

n + 1

=
|x− 2|

2
lim

n→∞

1
1 + 1/n

=
|x− 2|

2
· 1
1 + 0

=
|x− 2|

2
< 1

So the series is absolutely convergent for |x− 2| < 2 which means R = 2.

lnx = ln 2 +
∞∑

n=1

(−1)n+1

2nn
(x− 2)n, |x− 2| < 2.

This can be checked in Mathematica using:

f[x_] = Log[x]
Series[f[x], {x, 2, 5}]
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Figure 3: Plots of f(x) = lnx (red) and the Taylor polynomial approximation of order 4 centered at a = 2, T4(x) =

ln 2 +
4∑

n=1

(−1)n+1

2nn
(x− 2)n (blue).

Example 11.11.2 Find the Taylor series of f(x) = 1/(1 + x)4 about x = 0.

The center of our Taylor series will be a = 0.

Let’s construct a table which will give us the derivatives, and enable us to calculate f (n)(a).

n f (n)(x) f (n)(a) = f (n)(0)
0 (1 + x)−4 1
1 −4(1 + x)−5 −4
2 4 · 5 (1 + x)−6 +4 · 5
3 −4 · 5 · 6 (1 + x)−7 −4 · 5 · 6
4 4 · 5 · 6 · 7 (1 + x)−8 +4 · 5 · 6 · 7
...

...
...

n (−1)n 1
2 · 3

(n + 3)!(1 + x)−(n+4) (−1)n (n + 3)!
6

So we can see that the general form is f (n)(0) = (−1)n (n + 3)!
6

.

cn =
f (n)(0)

n!
=

(−1)n (n+3)!
6

n!
= (−1)n (n + 1)(n + 2)(n + 3)

6
.

The Taylor series is given by

1
(1 + x)4

=
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

(−1)n (n + 1)(n + 2)(n + 3)
6

xn, |x| < R.
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Now we want to find the radius of convergence, R. We can do this using the ratio test, where

an = (−1)n (n + 1)(n + 2)(n + 3)
6

xn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(n + 2)(n + 3)(n + 4)xn+1

6
· 6
(−1)nxn(n + 1)(n + 2)(n + 3)

∣∣∣∣
= lim

n→∞

∣∣∣∣xn+1−n · (n + 2)(n + 3)(n + 4)
(n + 1)(n + 2)(n + 3)

∣∣∣∣
= |x| lim

n→∞

∣∣∣∣ (n + 4)
(n + 1)

∣∣∣∣
= |x| lim

n→∞

∣∣∣∣ (1 + 4/n)
(1 + 1/n)

∣∣∣∣
= |x| · 1 + 0

1 + 0
= |x| < 1

So the series is absolutely convergent for |x| < 1 which means R = 1.

1
(1 + x)4

=
∞∑

n=0

(−1)n (n + 1)(n + 2)(n + 3)
6

xn, |x| < 1.

f[x_] = 1/(1+x)^4
Series[f[x], {x, 0, 5}]

Figure 4: Plots of f(x) = 1/(1 + x)4 (red) and the Taylor polynomial approximation centered at a = 0 of order 2 (blue),
and 100 (green).

Example 11.10.35 Find the MacLaurin series for f(x) = ln(1 + x) and use it to calculate ln 1.1 to five decimals.

The center of our Taylor series will be a = 0.

Let’s construct a table which will give us the derivatives, and enable us to calculate f (n)(a).
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n f (n)(x) f (n)(a) = f (n)(0)
0 ln(1 + x) ln 1 = 0
1 (1 + x)−1 1
2 −(1 + x)−2 −1
3 +2(1 + x)−3 +2
4 −2 · 3(1 + x)−4 −2 · 3
...

...
...

n 6= 0 (−1)n+1(n− 1)!
1

(1 + x)n
(−1)n+1(n− 1)!

So we can see that the general form is f (n)(0) = (−1)n+1(n − 1)! if n 6= 0, and f (0)(0) = 0. Since the form changes, we
will have to pull the n = 0 term out of our sum.

cn =
f (n)(0)

n!
=

(−1)n+1(n− 1)!
n!

=
(−1)n+1

n
, n 6= 0; c0 = 0

The Taylor series is given by

ln(1 + x) = 0 +
∞∑

n=1

f (n)(0)
n!

(x− 0)n =
∞∑

n=1

(−1)n+1

n
xn, |x| < R.

Now we want to find the radius of convergence, R. We can do this using the ratio test, where an =
(−1)n+1

n
xn.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+2xn+1

(n + 1)
· n

(−1)n+1xn

∣∣∣∣
= lim

n→∞

∣∣∣∣xn+1−n · n

n + 1

∣∣∣∣
= |x| lim

n→∞

n

n + 1

= |x| lim
n→∞

1
1 + 1/n

= |x| · 1
1 + 0

= |x| < 1

So the series is absolutely convergent for |x| < 1 which means R = 1.

ln(1 + x) =
∞∑

n=1

(−1)n+1

n
xn, |x| < 1.

We can use this to get an estimate for ln 1.1:

ln 1.1 = ln(1 + 0.1) =
∞∑

n=1

(−1)n+1

n
(0.1)n

= 0.1− 0.005 + 0.0003333− 0.000025 + 0.000002− · · ·
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Since the series is alternating, we can estimate the error in truncating by the first term dropped, |Rn| ≤ |an+1|. We can
therefore write

ln 1.1 = 0.1− 0.005 + 0.0003333− 0.000025 + 0.000002− · · ·
∼ 0.1− 0.005 + 0.0003333− 0.000025, |error| ≤ 0.000002
∼ 0.09531, |error| ≤ 0.000002

I used the Mathematica commands:

a[n_] = (-1)^(n + 1)/n (0.1)^n
a[1]
a[2]
a[3]
a[4]
a[5]
a[1] + a[2] + a[3] + a[4]

and to check the answer I used

f[x_] = Log[1 + x]
g[x_] = Normal[Series[f[x], {x, 0, 5}]]
Log[1.1]

Example 11.10.44 Use series to approximate the definite integral to within an |error| < 0.001

∫ 1/2

0

x2e−x2
dx.

We need to expand the integrand as a series. However, it is complicated looking; we might not be able to find a pattern.

Let’s use Mathematica to help us get the derivatives we need to form the Taylor series. The problem doesn’t tell us what
to use as the center; I choose to use a = 0, although other values for the center will work.

f[x_] = x^2 Exp[-x^2]
Simplify[f’[x]]
Simplify[f’’[x]]
Simplify[f’’’[x]]
Simplify[f’’’’[x]]

The derivatives look kind of complicated. Here they are:

f(x) = x2e−x2

f (1)(x) = −2xe−x2
(−1 + x2)
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f (2)(x) = 2e−x2
(1− 5x2 + 2x4)

f (3)(x) = −4e−x2
x(6− 9x2 + 2x4)

f (4)(x) = 4e−x2
(−6 + 39x2 − 28x4 + 4x6)

I evaluated them at x = a = 0 and found:

Simplify[f[0]]
Simplify[f’[0]]
Simplify[f’’[0]]
Simplify[f’’’[0]]
Simplify[f’’’’[0]]

f(x) = 0

f (1)(x) = 0

f (2)(x) = 2

f (3)(x) = 0

f (4)(x) = −24

Wow! Lot’s of zeros! So we have for our Taylor series

f(x) = x2e−x2
∼ 0 + 0 +

2
2!

x2 + 0− 24
4!

x4 = x2 − x4

This simplified version looks like there might be a simple pattern after all. Let’s get some more terms and see if we can
figure it out.

Simplify[f’’’’’[0]]/5!
Simplify[f’’’’’’[0]]/6!
Simplify[f’’’’’’’[0]]/7!
Simplify[f’’’’’’’’[0]]/8!

We find c5 = 0, c6 = 1/2, c7 = 0, and c8 = −1/6. We now have

f(x) = x2 − x4 +
1
2
x6 − 1

6
x8 + · · ·
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Our pattern is

f(x) =
∞∑

n=2

(−1)n

(n− 2)!
x2n−2.

Let’s get the radius of convergence using the ratio test: where an =
(−1)n

(n− 2)!
x2n−2.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1x2n

(n− 1)!
· (n− 2)!
(−1)nx2n−2

∣∣∣∣
= lim

n→∞

∣∣∣∣x2n+2−2n · 1
n− 1

∣∣∣∣
= |x2| lim

n→∞

1
n− 1

= |x2| · 0 = 0 < 1 for all x.

The radius of convergence is R = ∞. We have shown that

f(x) = x2e−x2
=
∞∑

n=2

(−1)n

(n− 2)!
x2n−2, |x| < ∞.

Now we can do the integral, which will work since the integration limits are inside |x| < ∞:

∫ 1/2

0

x2e−x2
dx =

∫ 1/2

0

∞∑
n=2

(−1)n

(n− 2)!
x2n−2 dx

=
∞∑

n=2

(−1)n

(n− 2)!

∫ 1/2

0

x2n−2 dx

=
∞∑

n=2

(−1)n

(n− 2)!
x2n−1

2n− 1

∣∣∣∣1/2

0

=
∞∑

n=2

(−1)n

(n− 2)!

(
(1/2)2n−1

2n− 1
− 02n−1

2n− 1

)

=
∞∑

n=2

(−1)n

(n− 2)!(2n− 1)22n−1

Since the series is alternating, we can estimate the error in truncating by the first term dropped, |Rn| ≤ |an+1|. Here is
some more Mathematica help:

a[n_] = (-1)^n/(n - 2)!/(2n - 1)/2.0^(2n - 1)
a[2]
a[3]
a[4]
a[5]
a[2] + a[3] + a[4]
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∫ 1/2

0

x2e−x2
dx =

∞∑
n=2

(−1)n

(n− 2)!(2n− 1)22n−1

∼ 0.0416667− 0.00625 + 0.000558036, |error| < 0.000036169.

∼ 0.03597, |error| < 0.00004.

There are other ways to go about solving this problem. This was the direct, brute force method of getting a Taylor series
for the integrand.

We might also have used the Taylor series for ey, and modified it to get the series for e−x2
, and then multiplied that by

x2 to get the Taylor series for x2e−x2
.


