Example Find the Taylor series of $f(x)=e^{-x}$ about $x=0$.
The center of our Taylor series will be $a=0$. This means it could be called a MacLaurin series.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$. We will want the general form, so we should try and write things in ways in which the pattern becomes evident.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	e^{-x}	1
1	$-e^{-x}$	-1
2	$+e^{-x}$	+1
3	$-e^{-x}$	-1
\vdots	\vdots	\vdots
n	$(-1)^{n} e^{-x}$	$(-1)^{n}$

So we can see that the general form is $f^{(n)}(0)=(-1)^{n}$, since if we take an even derivative we get a positive number, and if we take an odd derivative the number is negative.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n}}{n!}
$$

The Taylor series is given by

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}, \quad|x|<R
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_{n}=\frac{(-1)^{n}}{n!} x^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{(-1)^{n} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x \frac{n!}{(n+1)!}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =|x| \cdot 0=0<1 \quad \text { for all } x
\end{aligned}
$$

So the series is absolutely convergent for all values of x, which means $R=\infty$.

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}, \quad x \in(-\infty, \infty)
$$

This can be checked in Mathematica using:

```
f[x_] = Exp[-x]
Series[f[x], {x, 0, 5}]
```


Figure 1: Plots of $f(x)=e^{-x}$ (red) and the Taylor polynomial approximation of order 2 centered at $a=2, T_{2}(x)=$ $\sum_{n=0}^{2} \frac{(-1)^{n}}{n!} x^{n}=1-x+\frac{x^{2}}{2}$ (blue).

Example Find the Taylor series of $f(x)=e^{-x}$ about $x=3$.

The center of our Taylor series will be $a=3$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(3)$
0	e^{-x}	$1 e^{-3}$
1	$-e^{-x}$	$-1 e^{-3}$
2	$+e^{-x}$	$+1 e^{-3}$
3	$-e^{-x}$	$-1 e^{-3}$
\vdots	\vdots	\vdots
n	$(-1)^{n} e^{-x}$	$(-1)^{n} e^{-3}$

So we can see that the general form is $f^{(n)}(3)=(-1)^{n} e^{-3}$.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n}}{e^{3} n!}
$$

The Taylor series is given by

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{3} n!}(x-3)^{n}, \quad|x-3|<R .
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where
$a_{n}=\frac{(-1)^{n}}{e^{3} n!}(x-3)^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-3)^{n+1}}{e^{3}(n+1)!} \cdot \frac{e^{3} n!}{(-1)^{n}(x-3)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(x-3) \frac{n!}{(n+1)!}\right| \\
& =|x-3| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =|x-3| \cdot 0=0<1 \text { for all } x .
\end{aligned}
$$

So the series is absolutely convergent for all values of x, which means $R=\infty$.

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{e^{3} n!}(x-3)^{n}, \quad x \in(-\infty, \infty)
$$

This can be checked in Mathematica using:
$\mathrm{f}\left[\mathrm{x}_{-}\right]=\operatorname{Exp}[-\mathrm{x}]$
Series[f[x], \{x, 3, 5\}]

Figure 2: Plots of $f(x)=e^{-x}$ (red) and the two Taylor polynomial approximations of order 2, one centered at $a=0$ (blue) and the other centered at $a=3$ (green).

Example 11.10.12 Find the Taylor series of $f(x)=\ln x$ about $x=2$.
The center of our Taylor series will be $a=2$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(2)$
0	$\ln x$	$\ln 2$
1	x^{-1}	$1 / 2$
2	$-x^{-2}$	$-1 / 2^{2}$
3	$+2 x^{-3}$	$+2 / 2^{3}$
4	$-2 \cdot 3 x^{-4}$	$-2 \cdot 3 / 2^{4}$
\vdots	\vdots	\vdots
$n \neq 0$	$(-1)^{n+1}(n-1)!\frac{1}{x^{n}}$	$(-1)^{n+1}(n-1)!\frac{1}{2^{n}}$

So we can see that the general form is $f^{(n)}(2)=(-1)^{n+1}(n-1)!\frac{1}{2^{n}}$ if $n \neq 0$, and $f^{(0)}(2)=\ln 2$. Since the form changes, we will have to pull the $n=0$ term out of our sum.

$$
c_{n}=\frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n+1}(n-1)!\frac{1}{2^{n}}}{n!}=\frac{(-1)^{n+1} \frac{1}{2^{n}}}{n}, n \neq 0 ; \quad c_{0}=\ln 2
$$

The Taylor series is given by

$$
\ln x=\ln 2+\sum_{n=1}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}, \quad|x-2|<R .
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_{n}=\frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(x-2)^{n+1}}{2^{n+1}(n+1)} \cdot \frac{2^{n} n}{(-1)^{n+1}(x-2)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|(x-2)^{n+1-n} 2^{n-n-1} \cdot \frac{n}{n+1}\right| \\
& =\frac{|x-2|}{2} \lim _{n \rightarrow \infty} \frac{n}{n+1} \\
& =\frac{|x-2|}{2} \lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \\
& =\frac{|x-2|}{2} \cdot \frac{1}{1+0}=\frac{|x-2|}{2}<1
\end{aligned}
$$

So the series is absolutely convergent for $|x-2|<2$ which means $R=2$.

$$
\ln x=\ln 2+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}, \quad|x-2|<2
$$

This can be checked in Mathematica using:
$f\left[x_{-}\right]=\log [x]$
Series [f[x], \{x, 2, 5\}]

Figure 3: Plots of $f(x)=\ln x$ (red) and the Taylor polynomial approximation of order 4 centered at $a=2, T_{4}(x)=$ $\ln 2+\sum_{n=1}^{4} \frac{(-1)^{n+1}}{2^{n} n}(x-2)^{n}$ (blue).

Example 11.11.2 Find the Taylor series of $f(x)=1 /(1+x)^{4}$ about $x=0$.
The center of our Taylor series will be $a=0$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	$(1+x)^{-4}$	1
1	$-4(1+x)^{-5}$	-4
2	$4 \cdot 5(1+x)^{-6}$	$+4 \cdot 5$
3	$-4 \cdot 5 \cdot 6(1+x)^{-7}$	$-4 \cdot 5 \cdot 6$
4	$4 \cdot 5 \cdot 6 \cdot 7(1+x)^{-8}$	$+4 \cdot 5 \cdot 6 \cdot 7$
\vdots	\vdots	\vdots
n	$(-1)^{n} \frac{1}{2 \cdot 3}(n+3)!(1+x)^{-(n+4)}$	$(-1)^{n} \frac{(n+3)!}{6}$

So we can see that the general form is $f^{(n)}(0)=(-1)^{n} \frac{(n+3)!}{6}$.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n} \frac{(n+3)!}{6}}{n!}=(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6}
$$

The Taylor series is given by

$$
\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n}, \quad|x|<R .
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where

$$
a_{n}=(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+2)(n+3)(n+4) x^{n+1}}{6} \cdot \frac{6}{(-1)^{n} x^{n}(n+1)(n+2)(n+3)}\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{n+1-n} \cdot \frac{(n+2)(n+3)(n+4)}{(n+1)(n+2)(n+3)}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{(n+4)}{(n+1)}\right| \\
& =|x| \lim _{n \rightarrow \infty}\left|\frac{(1+4 / n)}{(1+1 / n)}\right| \\
& =|x| \cdot \frac{1+0}{1+0}=|x|<1
\end{aligned}
$$

So the series is absolutely convergent for $|x|<1$ which means $R=1$.

$$
\frac{1}{(1+x)^{4}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+1)(n+2)(n+3)}{6} x^{n}, \quad|x|<1 .
$$

$\mathrm{f}\left[\mathrm{x}_{-}\right]=1 /(1+\mathrm{x})^{\wedge} 4$
Series[f[x], \{x, 0, 5\}]

Figure 4: Plots of $f(x)=1 /(1+x)^{4}$ (red) and the Taylor polynomial approximation centered at $a=0$ of order 2 (blue), and 100 (green).

Example 11.10.35 Find the MacLaurin series for $f(x)=\ln (1+x)$ and use it to calculate $\ln 1.1$ to five decimals.
The center of our Taylor series will be $a=0$.
Let's construct a table which will give us the derivatives, and enable us to calculate $f^{(n)}(a)$.

n	$f^{(n)}(x)$	$f^{(n)}(a)=f^{(n)}(0)$
0	$\ln (1+x)$	$\ln 1=0$
1	$(1+x)^{-1}$	1
2	$-(1+x)^{-2}$	-1
3	$+2(1+x)^{-3}$	+2
4	$-2 \cdot 3(1+x)^{-4}$	$-2 \cdot 3$
\vdots	\vdots	\vdots
$n \neq 0$	$(-1)^{n+1}(n-1)!\frac{1}{(1+x)^{n}}$	$(-1)^{n+1}(n-1)!$

So we can see that the general form is $f^{(n)}(0)=(-1)^{n+1}(n-1)$! if $n \neq 0$, and $f^{(0)}(0)=0$. Since the form changes, we will have to pull the $n=0$ term out of our sum.

$$
c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n+1}(n-1)!}{n!}=\frac{(-1)^{n+1}}{n}, n \neq 0 ; \quad c_{0}=0
$$

The Taylor series is given by

$$
\ln (1+x)=0+\sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}, \quad|x|<R
$$

Now we want to find the radius of convergence, R. We can do this using the ratio test, where $a_{n}=\frac{(-1)^{n+1}}{n} x^{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2} x^{n+1}}{(n+1)} \cdot \frac{n}{(-1)^{n+1} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{n+1-n} \cdot \frac{n}{n+1}\right| \\
& =|x| \lim _{n \rightarrow \infty} \frac{n}{n+1} \\
& =|x| \lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \\
& =|x| \cdot \frac{1}{1+0}=|x|<1
\end{aligned}
$$

So the series is absolutely convergent for $|x|<1$ which means $R=1$.

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}, \quad|x|<1
$$

We can use this to get an estimate for $\ln 1.1$:

$$
\begin{aligned}
\ln 1.1=\ln (1+0.1) & =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(0.1)^{n} \\
& =0.1-0.005+0.0003333-0.000025+0.000002-\cdots
\end{aligned}
$$

Since the series is alternating, we can estimate the error in truncating by the first term dropped, $\left|R_{n}\right| \leq\left|a_{n+1}\right|$. We can therefore write

$$
\begin{aligned}
\ln 1.1 & =0.1-0.005+0.0003333-0.000025+0.000002-\cdots \\
& \sim 0.1-0.005+0.0003333-0.000025, \quad \mid \text { error } \mid \leq 0.000002 \\
& \sim 0.09531, \quad \mid \text { error } \mid \leq 0.000002
\end{aligned}
$$

I used the Mathematica commands:

```
a[n_] = (-1)^(n + 1)/n (0.1)^n
a[1]
a[2]
a[3]
a[4]
a [5]
a[1] +a[2] + a[3] + a[4]
```

and to check the answer I used

```
f[x_] = Log[1 + x]
g[x_] = Normal[Series[f[x], {x, 0, 5}]]
Log[1.1]
```

Example 11.10.44 Use series to approximate the definite integral to within an \mid error $\mid<0.001$

$$
\int_{0}^{1 / 2} x^{2} e^{-x^{2}} d x
$$

We need to expand the integrand as a series. However, it is complicated looking; we might not be able to find a pattern.
Let's use Mathematica to help us get the derivatives we need to form the Taylor series. The problem doesn't tell us what to use as the center; I choose to use $a=0$, although other values for the center will work.

```
\(f\left[x_{-}\right]=x^{\wedge} 2 \operatorname{Exp}\left[-x^{\wedge} 2\right]\)
Simplify[f'[x]]
Simplify[f,'[x]]
Simplify[f,', \([x]]\)
Simplify[f,',',[x]]
```

The derivatives look kind of complicated. Here they are:

$$
\begin{aligned}
& f(x)=x^{2} e^{-x^{2}} \\
& f^{(1)}(x)=-2 x e^{-x^{2}}\left(-1+x^{2}\right)
\end{aligned}
$$

$$
f^{(2)}(x)=2 e^{-x^{2}}\left(1-5 x^{2}+2 x^{4}\right)
$$

$$
f^{(3)}(x)=-4 e^{-x^{2}} x\left(6-9 x^{2}+2 x^{4}\right)
$$

$$
f^{(4)}(x)=4 e^{-x^{2}}\left(-6+39 x^{2}-28 x^{4}+4 x^{6}\right)
$$

I evaluated them at $x=a=0$ and found:

```
Simplify[f[0]]
Simplify[f'[0]]
Simplify[f',[0]]
Simplify[f','[0]]
Simplify[f,',',[0]]
```

$$
f(x)=0
$$

$$
f^{(1)}(x)=0
$$

$$
f^{(2)}(x)=2
$$

$$
f^{(3)}(x)=0
$$

$$
f^{(4)}(x)=-24
$$

Wow! Lot's of zeros! So we have for our Taylor series

$$
f(x)=x^{2} e^{-x^{2}} \sim 0+0+\frac{2}{2!} x^{2}+0-\frac{24}{4!} x^{4}=x^{2}-x^{4}
$$

This simplified version looks like there might be a simple pattern after all. Let's get some more terms and see if we can figure it out.

```
Simplify[f,',,',[0]]/5!
Simplify[f,',','[0]]/6!
Simplify[f,',',','[0]]/7!
Simplify[f,',,',',[0]]/8!
```

We find $c_{5}=0, c_{6}=1 / 2, c_{7}=0$, and $c_{8}=-1 / 6$. We now have

$$
f(x)=x^{2}-x^{4}+\frac{1}{2} x^{6}-\frac{1}{6} x^{8}+\cdots
$$

Our pattern is

$$
f(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!} x^{2 n-2}
$$

Let's get the radius of convergence using the ratio test: where $a_{n}=\frac{(-1)^{n}}{(n-2)!} x^{2 n-2}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n}}{(n-1)!} \cdot \frac{(n-2)!}{(-1)^{n} x^{2 n-2}}\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{2 n+2-2 n} \cdot \frac{1}{n-1}\right| \\
& =\left|x^{2}\right| \lim _{n \rightarrow \infty} \frac{1}{n-1} \\
& =\left|x^{2}\right| \cdot 0=0<1 \quad \text { for all } x
\end{aligned}
$$

The radius of convergence is $R=\infty$. We have shown that

$$
f(x)=x^{2} e^{-x^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!} x^{2 n-2}, \quad|x|<\infty
$$

Now we can do the integral, which will work since the integration limits are inside $|x|<\infty$:

$$
\begin{aligned}
\int_{0}^{1 / 2} x^{2} e^{-x^{2}} d x & =\int_{0}^{1 / 2} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!} x^{2 n-2} d x \\
& =\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!} \int_{0}^{1 / 2} x^{2 n-2} d x \\
& =\left.\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!} \frac{x^{2 n-1}}{2 n-1}\right|_{0} ^{1 / 2} \\
& =\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!}\left(\frac{(1 / 2)^{2 n-1}}{2 n-1}-\frac{0^{2 n-1}}{2 n-1}\right) \\
& =\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!(2 n-1) 2^{2 n-1}}
\end{aligned}
$$

Since the series is alternating, we can estimate the error in truncating by the first term dropped, $\left|R_{n}\right| \leq\left|a_{n+1}\right|$. Here is some more Mathematica help:
$a\left[n_{-}\right]=(-1)^{\wedge} n /(n-2)!/(2 n-1) / 2 \cdot 0^{\wedge}(2 n-1)$
a[2]
a[3]
a[4]
a [5]
$a[2]+a[3]+a[4]$

$$
\begin{aligned}
\int_{0}^{1 / 2} x^{2} e^{-x^{2}} d x & =\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(n-2)!(2 n-1) 2^{2 n-1}} \\
& \sim 0.0416667-0.00625+0.000558036, \quad \mid \text { error } \mid<0.000036169 \\
& \sim 0.03597, \quad \mid \text { error } \mid<0.00004
\end{aligned}
$$

There are other ways to go about solving this problem. This was the direct, brute force method of getting a Taylor series for the integrand.

We might also have used the Taylor series for e^{y}, and modified it to get the series for $e^{-x^{2}}$, and then multiplied that by x^{2} to get the Taylor series for $x^{2} e^{-x^{2}}$.

