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Questions

1) Find the first 40 terms of the sequence defined by

an+1 =

{ an

2
an even

3an + 1 an odd

and a1 = 11. Do the same if a1 = 25. Make a conjecture about this type of sequence.

2) For what values of r is the sequence {nrn} convergent?

3) Find the limit of the sequence {
√

2,
√

2
√

2,

√
2
√

2
√

2, . . .}.

4) A sequence is given by a1 =
√

2, an+1 =
√

2 + an.

(a) By induction or otherwise, show {an} is increasing and bounded above by 3. Show the sequence is convergent.

(b) Find lim
n→∞

an.

Solutions

1) We could work this out by hand, but let’s extend our knowledge of Mathematica a little instead.

New commands are If, OddQ. There is also a command EvenQ, but we won’t need it for this problem. The original
sequence was given as

a1 = 11, an+1 =
{

an

2 an even
3an + 1 an odd

which has n = 1, 2, 3 . . .. However, to input it into Mathematica we prefer the following

a1 = 11, an =
{ an−1

2 an−1 even
3an−1 + 1 an−1 odd

which has n = 2, 3, 4 . . ..

Here are the Mathematica commands to define the sequence:

a[1] := 11
a[n_] := a[n] = If[OddQ[a[n - 1]], 3a[n - 1] + 1, a[n - 1]/2]

I treated the sequence with different starting value as a totally new sequence, and defined it as

b[1] := 25
b[n_] := b[n] = If[OddQ[b[n - 1]], 3b[n - 1] + 1, b[n - 1]/2]
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The sequences are found to be:

{an} = {11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4}

{bn} = {25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2,
1, 4, 2, 1, 4}

To make the connection easier to see, let’s write a small table.

n an bn

18 1 10
19 4 5
20 2 16
21 1 8
22 4 4
23 2 2
24 1 1
25 4 4
26 2 2

The two sequences become the same after the n = 22! This isn’t surprising, since the only thing that changed was
the initial starting point...but then again, it is surprising, since a different starting point you might think would lead to
different values later on. The sequence is oscillating, so it does not converge.

There are a number of conjectures you might make based on your findings. My conjecture is that for n sufficiently large,
all sequences of this form, regardless of the value of a1, will look like {..., 4, 2, 1, 4, 2, 1, ...}. This is just a conjecture, to
prove this would require more work!

2) This is very similar to the sequence {rn}, which is discussed in the text. We are assuming that n = 1, 2, 3, . . ..

To begin, the sequence {nrn} will be divergent if r > 1, since the sequence will undergo exponential growth.

If r = 1, the sequence will become {n}, which exhibits linear growth, and so the sequence will diverge.

If r < −1, the sequence will oscillate with exponential growth, and so the sequence will diverge.

If r = −1, the sequence will become {n(−1)n}, the sequence will oscillate with linear growth, and so the sequence will
diverge.

If r = 0, the sequence will become {0} = {0, 0, 0, 0, . . .} which is convergent to zero.

All that remains is what happens if −1 < r < 1, r 6= 0. So let’s assume this is the case and proceed.

We will need to work out a limit that is easiest to deal with in the continuous form. Let f(x) = xrx, and we have
f(n) = nrn, n = 1, 2, 3, . . ..

lim
x→∞

f(x) = lim
x→∞

xrx −→∞ · 0

= lim
x→∞

x

r−x
−→ ∞

∞
indeterminant quotient, l’Hospital’s rule applies

= lim
x→∞

d
dxx

d
dxr−x
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= − lim
x→∞

1
r−x

= − lim
x→∞

rx

= 0

The above analysis depended heavily on the fact that −1 < r < 1, r 6= 0. The limits were all taken with this restriction
on r in place.

Since limx→∞ f(x) = 0 and f(n) = nrn, n = 1, 2, 3, . . ., we can say that limn→∞ nrn = 0 if −1 < r < 1, r 6= 0.

We have now treated all possible values of r. We see that the sequence {nrn} converges to zero if −1 < r < 1, and diverges
for all other values of r.

3) (Note: alternate solution follows this solution.)

We can write the sequence we are investigating recursively as follows

a1 =
√

2, an =
√

2an−1, n = 2, 3, 4, . . .

Show the sequence is increasing

To show the sequence is increasing we shall use mathematical induction (see page 79).

We want to show the result an+1 ≥ an all n ≥ 1.

• Step 1 in induction: Show the result is true for n = 1.

If n = 1, we have that

a2 =
√

2
√

2 = 23/4 =
(
21/4

)3

>
(
21/4

)2

=
√

2 = a1

So the result is true for n = 1.

• Step 2 in induction: Assume the result is true for n = k.

We assume ak+1 ≥ ak.

• Step 3 in induction: Show the result is true for n = k + 1.

From Step 2, we have:

ak+1 ≥ ak

2ak+1 ≥ 2ak√
2ak+1 ≥

√
2ak

ak+2 ≥ ak+1

So we have shown that ak+2 ≥ ak+1 true.

Therefore, an+1 ≥ an for all n ≥ 1 is true by mathematical induction.

The sequence is increasing. The lower bound of the sequence is a1 =
√

2.
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Show the sequence is bounded above

To show the sequence is bounded above we shall again use mathematical induction.

We want to show the result an < 5 all n ≥ 1. I picked 5 out of the air. If it doesn’t work, I will try something else.

• Step 1 in induction: Show the result is true for n = 1.

If n = 1, we have that

a1 =
√

2 < 5

So the result is true for n = 1.

• Step 2 in induction: Assume the result is true for n = k.

We assume ak ≤ 5.

• Step 3 in induction: Show the result is true for n = k + 1.

From Step 2, we have:

ak ≤ 5
2ak ≤ 2(5)

ak+1 =
√

2ak ≤
√

10 < 5
ak+1 ≤ 5

So we have shown that ak+1 ≤ 5 true.

Therefore, an ≤ 5 for all n ≥ 1 is true by mathematical induction.

The sequence is bounded above by 5.

Find the limit of the sequence

Since the sequence is increasing, it is monotonic. The sequence is also bounded. Any monotonic, bounded sequence is
convergent (by the monotonic sequence theory). Therefore, the sequence is convergent.

Since the sequence converges, it must be true that

lim
n→∞

an = lim
n→∞

an−1 = L

We can therefore say

an =
√

2an−1

lim
n→∞

(an =
√

2an−1)

lim
n→∞

an =
√

2 lim
n→∞

an−1

L =
√

2L

L2 = 2L

L = 0,+2
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We can exclude L = 0, since the sequence is increasing, and a1 =
√

2 > 0. Therefore, the limit of the sequence is 2.

Alternate solution to Problem 3

Rather than looking for a recursive definition of the sequence, we could instead search for the general term an. In this
case, we can find it.

{
√

2,

√
2
√

2,

√
2
√

2
√

2, . . .}

{21/2, (23/2)1/2, (2 · 23/4)1/2, . . .}
{21/2, 23/4, (27/4)1/2, . . .}
{21/2, 23/4, 27/8, . . .}

The exponent is given by (2n − 1)/2n. This sequence can be expressed as {an}∞n=1 = {2(2n−1)/2n}.

Now that we have this, we don’t need to use induction. We can work directly with the term an to calculate the limit.

lim
n→∞

an = lim
n→∞

2(2n−1)/2n

= 2limn→∞(2n−1)/2n

lim
n→∞

(2n − 1)
2n

= lim
n→∞

(1− 2−n)

= 1
lim

n→∞
an = 2limn→∞(2n−1)/2n

= 21 = 2

4) We can write the sequence we are investigating recursively as follows

a1 =
√

2, an =
√

2 + an−1, n = 2, 3, 4, . . .

Show the sequence is increasing

To show the sequence is increasing we shall use mathematical induction.

We want to show the result an+1 ≥ an all n ≥ 1.

• Step 1 in induction: Show the result is true for n = 1.

If n = 1, we have that

a2 =
√

2 +
√

2 >
√

2 + 1 =
√

3 >
√

2 = a1

So the result is true for n = 1.

• Step 2 in induction: Assume the result is true for n = k.

We assume ak+1 ≥ ak.
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• Step 3 in induction: Show the result is true for n = k + 1.

From Step 2, we have:

ak+1 ≥ ak

2 + ak+1 ≥ 2 + ak√
2 + ak+1 ≥

√
2 + ak

ak+2 ≥ ak+1

So we have shown that ak+2 ≥ ak+1 true.

Therefore, an+1 ≥ an for all n ≥ 1 is true by mathematical induction.

The sequence is increasing. The lower bound of the sequence is a1 =
√

2.

Show the sequence is bounded above

To show the sequence is bounded above we shall again use mathematical induction.

We want to show the result an < 3 all n ≥ 1. The 3 was given to us in the problem.

• Step 1 in induction: Show the result is true for n = 1.

If n = 1, we have that

a1 =
√

2 < 3

So the result is true for n = 1.

• Step 2 in induction: Assume the result is true for n = k.

We assume ak ≤ 3.

• Step 3 in induction: Show the result is true for n = k + 1.

From Step 2, we have:

ak ≤ 3
2 + ak ≤ 2 + 3

ak+1 =
√

2 + ak ≤
√

5 < 3
ak+1 ≤ 3

So we have shown that ak+1 ≤ 3 true.

Therefore, an ≤ 5 for all n ≥ 1 is true by mathematical induction.

The sequence is bounded above by 3.
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Find the limit of the sequence

Since the sequence is increasing, it is monotonic. The sequence is also bounded. Any monotonic, bounded sequence is
convergent (by the monotonic sequence theory). Therefore, the sequence is convergent.

Since the sequence converges, it must be true that

lim
n→∞

an = lim
n→∞

an−1 = L

We can therefore say

an =
√

2 + an−1

lim
n→∞

(an =
√

2 + an−1)

lim
n→∞

an =
√

2 + lim
n→∞

an−1

L =
√

2 + L

L2 = 2 + L

L2 − L− 2 = 0
L = −1,+2

We can exclude L = −1, since the sequence is increasing, and a1 =
√

2 > 0. We could also justify excluding −1 since
an = +

√
2 + an−1 > 0.

Therefore, the limit of the sequence is 2.


