Example A particle moves along a line so that $v(t)=3 t-5 \mathrm{~m} / \mathrm{s}$. Positive displacement is measured to the right.
a) Find the displacement of the particle during the time period $0 \leq t \leq 3$.
b) Find the distance traveled during this time period.

$$
\begin{aligned}
\text { displacement } & =s(3)-s(0) \\
& =\int_{0}^{3} v(t) d t \\
& =\int_{0}^{3}(3 t-5) d t \\
& =\left(\frac{3 t^{2}}{2}-5 t\right)_{0}^{3} \\
& =\left(\frac{3(3)^{2}}{2}-5(3)\right)-\left(\frac{3(0)^{2}}{2}-5(0)\right) \\
& =-\frac{3}{2} \mathrm{~m}
\end{aligned}
$$

The particle moved $3 / 2 \mathrm{~m}$ to the left (because of the minus sign).

$$
\begin{aligned}
\text { distance traveled } & =\int_{0}^{3}|v(t)| d t \\
& =\int_{0}^{3}|3 t-5| d t
\end{aligned}
$$

We need to work out the absolute value:

$$
\begin{aligned}
& |3 t-5|=\left\{\begin{aligned}
(3 t-5) & \text { if } 3 t-5 \geq 0 \\
-(3 t-5) & \text { if } 3 t-5<0
\end{aligned}\right. \\
& =\left\{\begin{aligned}
(3 t-5) & \text { if } t \geq \frac{5}{3} \\
-(3 t-5) & \text { if } t<\frac{5}{3}
\end{aligned}\right. \\
& \text { distance traveled }=\int_{0}^{3}|3 t-5| d t \\
& =\int_{0}^{5 / 3}|3 t-5| d t+\int_{5 / 3}^{3}|3 t-5| d t \\
& =\int_{0}^{5 / 3}(-(3 t-5)) d t+\int_{5 / 3}^{3}(3 t-5) d t \\
& =-\left(\frac{3 t^{2}}{2}-5 t\right)_{0}^{5 / 3}+\left(\frac{3 t^{2}}{2}-5 t\right)_{5 / 3}^{3} \\
& =-\left(\frac{3(5 / 3)^{2}}{2}-(5) \frac{5}{3}\right)+\left(\frac{3(0)^{2}}{2}-5(0)\right)+\left(\frac{3(3)^{2}}{2}-5(3)\right)-\left(\frac{3(5 / 3)^{2}}{2}-(5) \frac{5}{3}\right) \\
& =\frac{41}{6} \mathrm{~m}
\end{aligned}
$$

The total distance traveled by the particle is $41 / 6 \mathrm{~m}$.

Example Find the distance traveled by a particle during the time from $t=0$ to $t=10$ if the particle moves with the acceleration $a(t)=t+4$ and the initial velocity is $v(0)=5$.

The velocity will be given by the integral of the acceleration:

$$
\begin{aligned}
& v(t)=\int a(t) d t+c \\
& v(t)=\frac{t^{2}}{2}+4 t+c
\end{aligned}
$$

Use the condition to determine the constant c :

$$
\begin{aligned}
& v(0)=0+0+c=5 \\
& v(t)=\frac{t^{2}}{2}+4 t+5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The distance traveled is given by:

$$
\int_{0}^{10}|v(t)| d t=\int_{0}^{10}\left|\frac{t^{2}}{2}+4 t+5\right| d t
$$

The integrand is positive in the region $0 \leq t \leq 10$, so the absolute value can be replaced with the function:

$$
\left|\frac{t^{2}}{2}+4 t+5\right|=\frac{t^{2}}{2}+4 t+5
$$

Aside: You can show this by working out the roots of the quadratic and seeing that they are both less than zero.

$$
\begin{aligned}
& \text { roots } \begin{aligned}
=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-4 \pm \sqrt{16-10}}{1}=-4 \pm \sqrt{6}<0 \\
\text { Distance Traveled } & =\int_{0}^{10}|v(t)| d t \\
& =\int_{0}^{10}\left(\frac{t^{2}}{2}+4 t+5\right) d t \\
& =\left(\frac{t^{3}}{6}+2 t^{2}+5 t\right)_{0}^{10} \\
& =\left(\frac{10^{3}}{6}+2(10)^{2}+5(10)\right)-\left(\frac{0^{3}}{6}+2(0)^{2}+5(0)\right) \\
& =\frac{1000}{6}+200+50=\frac{1250}{3}
\end{aligned}
\end{aligned}
$$

The distance traveled by the particle is $1250 / 3 \mathrm{~m}$.

