Example $f(x)=x^{2}+3 x-4$, find $f^{\prime}(x)$.

$$
\begin{aligned}
f(x) & =x^{2}+3 x-4 \\
f^{\prime}(x) & =\frac{d}{d x}\left[x^{2}+3 x-4\right] \\
& =\frac{d}{d x}\left[x^{2}\right]+3 \frac{d}{d x}[x]-\frac{d}{d x}[4] \quad \text { Sum Rule } \\
& =2 x^{2-1}+3(1) x^{1-1}-0 \quad \text { Power Rule, Constant Rule } \\
& =2 x+3
\end{aligned}
$$

Example $f(x)=x+\frac{1}{x}$, find $f^{\prime}(x)$.

$$
\begin{aligned}
f(x) & =x+\frac{1}{x} \\
& =x+x^{-1} \\
f^{\prime}(x) & =\frac{d}{d x}\left[x+x^{-1}\right] \\
& =\frac{d}{d x}[x]+\frac{d}{d x}\left[x^{-1}\right] \quad \text { Sum Rule } \\
& =(1) x^{1-1}+(-1) x^{-1-1} \quad \text { Power Rule } \\
& =1-x^{-2} \\
& =1-\frac{1}{x^{2}}
\end{aligned}
$$

Example $f(x)=\left(x^{2}+4 x+3\right) / \sqrt{x}$, find $f^{\prime}(x)$.

$$
\begin{array}{rll}
f(x) & =\frac{x^{2}}{x^{1 / 2}}+4 \frac{x}{x^{1 / 2}}+3 \frac{1}{x^{1 / 2}} \\
& =x^{2-1 / 2}+4 x^{1-1 / 2}+3 x^{-1 / 2} \\
& =x^{3 / 2}+4 x^{1 / 2}+3 x^{-1 / 2} \\
f^{\prime}(x) & =\frac{d}{d x}\left[x^{3 / 2}+4 x^{1 / 2}+3 x^{-1 / 2}\right] & \\
& =\frac{d}{d x}\left[x^{3 / 2}\right]+4 \frac{d}{d x}\left[x^{1 / 2}\right]+3 \frac{d}{d x}\left[x^{-1 / 2}\right] & \text { Sum Rule } \\
& =\frac{3}{2} x^{3 / 2-1}+4 \frac{1}{2} x^{1 / 2-1}+3 \frac{-1}{2} x^{-1 / 2-1} & \text { Power Rule } \\
& =\frac{3}{2} x^{1 / 2}+2 x^{-1 / 2}-\frac{3}{2} x^{-3 / 2} &
\end{array}
$$

Example Find the points on the curve $y=f(x)$ where the tangent line is horizontal: $f(x)=x^{4}-6 x^{2}+4$.
The derivative is equal to the slope of the tangent line.
If the tangent line is horizontal, the slope must by zero.
Therefore, we want to solve $f^{\prime}(a)=0$ for a.
There may be more than one such a.
Then, the points on the curve will be $(a, f(a))$.

$$
f(x)=x^{4}-6 x^{2}+4
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left[x^{4}-6 x^{2}+4\right] \\
&=\frac{d}{d x}\left[x^{4}\right]-6 \frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}[4] \quad \text { Sum, Difference, Constant Multiple Rules } \\
&= 4 x^{4-1}-6(2) x^{2-1}+0 \quad \text { Power Rule, Constant Rule } \\
& f^{\prime}(x)=4 x^{3}-12 x \\
& f^{\prime}(a)=0 \rightarrow 4 a^{3}-12 a=0 \\
& 4 a\left(a^{2}-3\right)=0 \\
& 4 a=0 \text { or } \quad\left(a^{2}-3\right)=0 \\
& a=0 \text { or } \quad a= \pm \sqrt{3}
\end{aligned}
$$

There are three points where the tangent is horizontal:

$$
\begin{aligned}
& (0, f(0))=(0,4) \\
& (\sqrt{3}, f(\sqrt{3}))=(\sqrt{3},-5) \\
& (-\sqrt{3}, f(-\sqrt{3}))=(-\sqrt{3},-5)
\end{aligned}
$$

You can get a plot using Mathematica if you like, and verify that the tangent is horizontal at these three points:

Plot $\left[x^{\wedge} 4-6 x^{\wedge} 2+4,\{x,-3,3\}\right]$

Example Find the equation of the tangent line to the curve $y=x \sqrt{x}$ at the point $(1,1)$.
The derivative is equal to the slope of the tangent line.
Therefore, we want to find $f^{\prime}(x)$.
The point we are interested in is $(1,1)$, which means $x=1$.
The slope of the tangent line at $x=1$ is $f^{\prime}(1)$.
The tangent line goes through the point $(1,1)$.
The equation of the tangent line can be found from $y-y_{0}=m\left(x-x_{0}\right)$.
The equation of the tangent line will be $y-1=f^{\prime}(1)(x-1)$.

$$
f(x)=x \sqrt{x}
$$

$$
\begin{aligned}
& =x \cdot x^{1 / 2}=x^{3 / 2} \\
f^{\prime}(x) & =\frac{d}{d x}\left[x^{3 / 2}\right] \\
& =\frac{3}{2} x^{3 / 2-1} \quad \text { Power Rule } \\
& =\frac{3}{2} x^{1 / 2} \\
f^{\prime}(1) & =\frac{3}{2}
\end{aligned}
$$

The equation of the tangent line is therefore:

$$
\begin{aligned}
y-1 & =\frac{3}{2}(x-1) \\
y & =\frac{3}{2} x-\frac{1}{2}
\end{aligned}
$$

Mathematica can help you visualize the situation:

Plot [\{x*Sqrt[x], 3*x/2-1/2\}, \{x, 0, 2\}]

Example At what point on the curve $y=e^{x}+x$ is the tangent line parallel to the line $y=2 x$?

Let $f(x)=e^{x}+x$.
Two lines are parallel if the have the same slope.
The slope of $y=2 x$ is $m=2$.
The slope of the tangent to the curve at $x=a$ is the derivative $f^{\prime}(a)$.
Therefore, we want to solve the equation $f^{\prime}(a)=2$ for all possible values of a.
The point on the curve where the tangent line is parallel to the curve $y=2 x$ will be $(a, f(a))$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[e^{x}+x\right] \\
& =\frac{d}{d x}\left[e^{x}\right]+\frac{d}{d x}[x] \quad \text { Sum Rule } \\
& =e^{x}+(1) x^{1-1} \quad \text { Exponential Rule, Power Rule } \\
& =e^{x}+1
\end{aligned}
$$

Examples from Sections 3.1 Derivatives of Polynomials and Exponential Functions 83 3.2 The Product and Quotient Rules

$$
\begin{aligned}
f^{\prime}(a)= & e^{a}+1 \\
f^{\prime}(a)=2 \rightarrow & e^{a}+1=2 \\
& e^{a}=1 \\
& \ln \left(e^{a}\right)=\ln 1 \\
& a=0
\end{aligned}
$$

The point where the tangent line is parallel to $y=2 x$ is $(a, f(a))=\left(0, e^{0}+0\right)=(0,1)$.
The equation of the tangent line is

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-y_{0} & =f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
y-1 & =2(x-0) \\
y & =2 x+1
\end{aligned}
$$

Verify graphically using Mathematica.

Plot [\{Exp[x] $+\mathrm{x}, 2 \mathrm{x}, 2 \mathrm{x}+1\},\{\mathrm{x},-2,2\}]$

Example $f(x)=e^{x} /\left(1+x^{2}\right)$, find $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{e^{x}}{1+x^{2}}\right] \\
& =\frac{\left(1+x^{2}\right) \frac{d}{d x}\left[e^{x}\right]-e^{x} \frac{d}{d x}\left[1+x^{2}\right]}{\left(1+x^{2}\right)^{2}} \quad \text { Quotient Rule } \\
& =\frac{\left(1+x^{2}\right) e^{x}-e^{x}\left(0+2 x^{2-1}\right)}{\left(1+x^{2}\right)^{2}} \quad \text { Exponential Rule, Constant Rule, Power Rule } \\
& =\frac{\left(1+x^{2}\right) e^{x}-e^{x}(2 x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{e^{x}\left(x^{2}-2 x+1\right)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{e^{x}(x-1)^{2}}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

Example $y=\left(x^{2}-2 x\right) e^{x}$, find y^{\prime}.

$$
\begin{aligned}
y & =\left(x^{2}-2 x\right) e^{x} \\
y^{\prime} & =\frac{d}{d x}\left[\left(x^{2}-2 x\right) e^{x}\right] \\
& =\frac{d}{d x}\left[\left(x^{2}-2 x\right)\right] e^{x}+\frac{d}{d x}\left[e^{x}\right]\left(x^{2}-2 x\right) \quad \text { Product Rule } \\
& =\left(2 x^{2-1}-2(1) x^{1-1}\right) e^{x}+e^{x}\left(x^{2}-2 x\right) \quad \text { Power Rule, Exponential Rule } \\
& =(2 x-2) e^{x}+e^{x}\left(x^{2}-2 x\right) \\
& =e^{x}\left(x^{2}-2\right)
\end{aligned}
$$

Example $y=(x-2) /(x-1)$, find y^{\prime}.

$$
\begin{aligned}
y & =(x-2) /(x-1) \\
y^{\prime} & =\frac{d}{d x}[(x-2) /(x-1)] \\
& =\frac{(x-1) \frac{d}{d x}[x-2]-(x-2) \frac{d}{d x}[x-1]}{(x-1)^{2}} \text { Quotient Rule } \\
& =\frac{(x-1)\left((1) x^{1-1}-0\right)-(x-2)\left((1) x^{1-1}-0\right)}{(x-1)^{2}} \quad \text { Power Rule, Constant Rule } \\
& =\frac{(x-1)(1)-(x-2)(1)}{(x-1)^{2}} \\
& =\frac{x-1-x+2}{(x-1)^{2}} \\
& =\frac{1}{(x-1)^{2}}
\end{aligned}
$$

Example Find equations of the tangent lines to the curve $y=(x-1) /(x+1)$ that are parallel to the line $x-2 y=2$.

Let $f(x)=(x-1) /(x+1)$.
Two lines are parallel if the have the same slope.
$x-2 y=2$ is the same as $y=x / 2-1$.
The slope of $y=x / 2-1$ is $1 / 2$.
The slope of the tangent to the curve at $x=a$ is the derivative $f^{\prime}(a)$.
Therefore, we want to solve the equation $f^{\prime}(a)=1 / 2$ for all possible values of a.
The points on the curve where the tangent line is parallel to the curve $y=x / 2-1$ will be $(a, f(a))$.
There may be more than one such point.
The equation of the tangent lines will be given by $y-f(a)=\frac{1}{2}(x-a)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x+1) \frac{d}{d x}(x-1)-(x-1) \frac{d}{d x}(x+1)}{(x+1)^{2}} \\
& =\frac{(x+1)(1)-(x-1)(1)}{(x+1)^{2}}
\end{aligned}
$$

Examples from Sections 3.1 Derivatives of Polynomials and Exponential Functions 83 3.2 The Product and Quotient Rules

$$
\begin{array}{rll}
& = & \frac{2}{(x+1)^{2}} \\
f^{\prime}(a) & = & \frac{2}{(a+1)^{2}}=\frac{1}{2} \\
& & 4=(a+1)^{2} \\
& \pm 2=a+1 \\
a+1=-2 & \text { or } & a+1=2 \\
a=-3 & \text { or } & a=1
\end{array}
$$

The equation of the tangents line at $(1, f(1))=(1,0)$ is

$$
y-0=\frac{1}{2}(x-1) \longrightarrow y=\frac{1}{2}(x-1)
$$

The equation of the tangents line at $(-3, f(-3))=(-3,2)$ is

$$
y-2=\frac{1}{2}(x+3) \longrightarrow y=\frac{x}{2}+\frac{7}{2}
$$

Verify graphically on Mathematica:
$\operatorname{Plot}[\{(x-1) /(x+1), x / 2-1 / 2, x / 2+7 / 2, x / 2-1\},\{x,-6,4\}, P l o t R a n g e->\{-5,5\}]$

