Asymptote: A vertical or horizontal line on a graph which a function approaches.
Antiderivative: The antiderivative of a function $f(x)$ is another function $F(x)$. If we take the derivative of $F(x)$ the result is $f(x)$. The most general antiderivative is a family of curves.

Antidifferentiation: The process of finding an antiderivative of a function $f(x)$.
Concavity: Concavity measures how a function bends, or in other words, the function's curvature.
Concave Down: A function $f(x)$ is concave down at $x=a$ if it is below its tangent line at $x=a$. This is true if $f^{\prime \prime}(a)<0$.

Concave Up: A function $f(x)$ is concave up at $x=a$ if it is above its tangent line at $x=a$. This is true if $f^{\prime \prime}(a)>0$.

Constant of Integration: The constant that is included when an indefinite integral is performed.
Definite Integral: Formally, a definite integral looks like $\int_{a}^{b} f(x) d x$. A definite integral when evaluated yields a number. The definite integral can be interpreted as the net area under the function $f(x)$ from $x=a$ to $x=b$.

Derivative: Formally, a derivative looks like $\frac{d}{d x} f(x)$, and represents the rate of change of $f(x)$ with respect to the variable x. Anther notation for derivative is $f^{\prime}(x)$.

Differential: Informally, a differential $d x$ can be thought of a small amount of x. Differentials appear in both derivatives and integrals.

Differentiation: The process of finding the derivative of a function $f(x)$.

Displacement: How far a particle has moved during a time interval from t_{1} to t_{2}. If $v(t)$ is the velocity, the displacement is given by $\int_{t_{1}}^{t_{2}} v(t) d t$.

Distance Traveled: The total distance a particle has moved during a time interval from t_{1} to t_{2}. Since this can include doubling back, this will be larger than or equal to the displacement, and will always be a non-negative quantity. If $v(t)$ is the velocity, the distance traveled is given by $\int_{t_{1}}^{t_{2}}|v(t)| d t$.

Extrema: Any of the maximum or minimum values for a function.
Family of Curves: A family of curves involves a constant, usually something like $g(x)+C$ (although other forms are possible), and when you assign different values to the constant C you get different members of the family of curves.

Fundamental Theorem of Calculus: The Fundamental Theorem of Calculus (FTC) explains the relationship between differentiation and integration. Essentially, differentiation and integration are inverse operations. There are two parts to the FTC, Part 1 is where integration is performed first and then differentiation, and Part 2 is where differentiation is first followed by integration.

$$
\text { Part 1: } \frac{d}{d x} \int_{a}^{x} f(t) d t=f(x) \quad \text { Part 2: } \int_{a}^{b} \frac{d}{d x}[g(x)] d x=g(b)-g(a)
$$

Horizontal Asymptote: If $\lim _{x \rightarrow \pm \infty} f(x)=L$, then $y=L$ is a horizontal asymptote of $f(x)$.

Indeterminant Form: A form that represents a number (or possibly is infinite) which cannot be determined without more mathematical invesitgation. Common indeterminant forms include $\frac{0}{0}, \frac{\infty}{\infty}, 1^{\infty}$. Indeterminant forms arise when evaluating limits.

Improper Integral: Formally, an improper integral looks like $\int_{a}^{b} f(x) d x$ where the integrand $f(x)$ is infinite for some $x \in[a, b]$, or $a \rightarrow-\infty$ or $b \rightarrow \infty$. Evaluating these types of integrals is studied in Calculus II.

Indefinite Integral: Formally, an indefinite integral looks like $\int f(x) d x$. An indefinite integral when evaluated yields a family of curves as the solution, $\int f(x) d x=F(x)+C$, where $F(x)+C$ is the most general antiderivative of the integrand.

Integral: Used as a way to refer to any of the specific types of integrals (definite, indefinite, or improper integral).
Integrand: The quantity being integrated. For $\int_{a}^{b} f(x) d x$, the integrand is $f(x)$.
Integration: The process of evaluating an integral (definite, indefinite, or improper) of a function $f(x)$.
Limits of Integration: For a definite integral, $\int_{a}^{b} f(x) d x$, the limits of integration are a (lower limit) and b (upper limit).

Net Area: When considering the area under a function $f(x)$ from $x=a$ to $x=b$, the area that is above the x-axis is considered positive, and the area below the x-axis is considered negative. The net area is the total area determined using this convention. The net area is sometimes referred to as the signed area. When definite integration is performed by finding an antiderivative of the integrand, the result is the net area.

Point of Inflection: A function $f(x)$ has a point of inflection at $x=a$ if the function changes concavity at $x=a$. This is possible if $f^{\prime \prime}(a)=0$.

Riemann Sum: The general form of a Riemann sum is $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{b-a}{n}$. The Riemann sum represents an approximation to the net area under a function $f(x)$ from $x=a$ to $x=b$. The approximation uses n rectangles to approximate the area.

Vertical Asymptote: If $\lim _{x \rightarrow a} f(x)= \pm \infty$, then $x=a$ is a vertical asymptote of $f(x)$.

