- This handout is not meant to be comprehensive. Study concept check, true/false quiz, and review exercises from text.
- Know the basic concepts from Chapter 1 (logarithms, exponentials, functional notation, algebra, etc).

Main concepts:

- limits and limit laws (evaluating limits, techniques when $\rightarrow 0 / 0$ or $\infty-\infty$, indeterminant forms)
- intermediate value theorem (roots of equations)
- continuity, discontinuity (jump, removable, infinite)
- vertical and horizontal asymptotes (infinite limits, limits at infinity)
- tangent lines, velocities, and other rates of change
- derivative (two definitions for derivative at a point, $g^{\prime}(2)$)
- derivative as a function (given $f(x)$, find $f^{\prime}(x)$, both algebraically and graphically)

Be comfortable working with:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=L \\
& \lim _{x \rightarrow a^{+}} f(x)=L \\
& \lim _{x \rightarrow a^{-}} f(x)=L \\
& \lim _{x \rightarrow a} f(x)=L \longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=L \text { and } \lim _{x \rightarrow a^{+}} f(x)=L \\
& \lim _{x \rightarrow a} f(x)=\infty \text { (the limit does not exist) }
\end{aligned}
$$

- vertical asymptote: $x=a$ is a vertical asymptote if $\lim _{x \rightarrow a^{+/-}} f(x)= \pm \infty$
- horizontal asymptote: $y=L$ is a horizontal asymptote if either $\lim _{x \rightarrow \pm \infty} f(x)=L$
- Indeterminant forms mean there is more work to do: indeterminant quotient: $\frac{0}{0}, \frac{\infty}{\infty}$. Indeterminant difference: $\infty-\infty$.
- Limit techniques: factor, rationalize, common denominator:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
& \lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}=\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3} \\
& \lim _{x \rightarrow 2} \frac{\left(\frac{1}{x}-\frac{1}{2}\right)}{x-2}=\lim _{x \rightarrow 2} \frac{1}{x-2}\left[\frac{2-x}{2 x}\right]
\end{aligned}
$$

- If $r>0$ is a rational number, then $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$.
- If $r>0$ is a rational number such that x^{r} is defined for all x, then $\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$.

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}=\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x}-\frac{2}{x^{2}}}{5+\frac{4}{x}+\frac{1}{x^{2}}}
$$

Techqnique: To evaluate a limit at infinity of a rational function, we divide the numerator and denominator by the highest power of x that occurs in the denominator.

$$
\lim _{x \rightarrow-\infty} \sqrt{x^{2}-x}+x=\lim _{x \rightarrow-\infty} \sqrt{x^{2}-x}+x \cdot \frac{\sqrt{x^{2}-x}-x}{\sqrt{x^{2}-x}-x} \text { (rationalize, then divide by highest power of } x \text { in denominator) }
$$

If the limit is as $x \rightarrow-\infty$ and involves square roots, remember $x=-\sqrt{x^{2}}$ if $x<0$.

- Continuity: The function f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
- Continuous from the left and continuous from the right.
- Polynomials are continuous everywhere, ie. $P(x)$ is a polynomial then it is continuous for $x \in(-\infty, \infty)$.
- Continuous on their domains: polynomials, rational, root, trig, inverse trig, exponential, and logarithmic functions.

Example: infinite limits at infinity Find $\lim _{x \rightarrow \infty}\left(x^{2}-x\right)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(x^{2}-x\right) & \rightarrow \infty-\infty \\
& =\lim _{x \rightarrow \infty} x(x-1)=\infty \cdot \infty=\infty
\end{aligned}
$$

Definition The tangent line to $y=f(x)$ at $(a, f(a))$ is the line through $(a, f(a))$ whose slope is equal to $f^{\prime}(a)$, the derivative of f evaluated at a.

- The point-slope form of the equation of a line with slope m through the point $\left(x_{1}, y_{1}\right): y-y_{1}=m\left(x-x_{1}\right)$
- The derivative of $f(x)$ at $x=a$ can be interpreted as the slope of the tangent line to the curve at $x=a$ which is the slope of the curve at $x=a$.
- The derivative of the position function $s=f(t)$ is the velocity function $f^{\prime}(t)=v(t)$.
- The derivative is an instantaneous rate of change.

Example A particle moves along a straight line with equation of motion $s=f(t)=2 t^{3}-t$, where s is measured in meters and t in seconds. Find the velocity when $t=2$.

- The derivative as function:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- A function can be continuous at a point, but not differentiable at that point.
- A function which is differentiable at a point is continuous at that point.

Example draw a sketch which illustrates why the definition

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

can be interpreted as the slope of the tangent line at $x=a$.

Theorems

Theorem If f and g are continuous at a and c is a constant, then $f+g, f-g, c f, f g, f / g$ if $g(a) \neq 0$ are also continuous at a.
Theorem If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.
Theorem If g is continuous at a and f is continuous at $g(a)$, then $f \circ g$ is continuous at a.
Intermediate Value Theorem Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

Example Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$ between 1 and 2 . Sketch the situation.

