Questions

Example Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function

$$
y=\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u
$$

Example Use Part 2 of the Fundamental Theorem of Calculus to evaluate the integral, or explain why it does not exist,

$$
\int_{0}^{4}\left(1+3 y-y^{2}\right) d y
$$

Example Find the interval on which the curve $y=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$ is concave up.

Solutions

Example Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function

$$
y=\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u
$$

This will require the chain rule.
Let $g(v)=\int_{v}^{1} \frac{u^{3}}{1+u^{2}} d u=\int_{1}^{v} \frac{-u^{3}}{1+u^{2}} d u$. Then $g^{\prime}(v)=\frac{d g}{d v}=\frac{-v^{3}}{1+v^{2}}$ by the FTC Part 1.
However, we have $y=g(1-3 x)$.
Therefore, $\frac{d y}{d x}=\frac{d}{d x} g(1-3 x)=g^{\prime}(1-3 x) \frac{d}{d x}(1-3 x)=\frac{-(1-3 x)^{3}}{1+(1-3 x)^{2}}(-3)=\frac{3(1-3 x)^{3}}{1+(1-3 x)^{2}}$.
Example Use Part 2 of the Fundamental Theorem of Calculus to evaluate the integral, or explain why it does not exist,

$$
\begin{aligned}
\int_{0}^{4}\left(1+3 y-y^{2}\right) d y \\
\begin{aligned}
\int_{0}^{4}\left(1+3 y-y^{2}\right) d y & =\left(y+\frac{3}{2} y^{2}-\frac{1}{3} y^{3}\right)_{0}^{4} \\
& =\left((4)+\frac{3}{2}(4)^{2}-\frac{1}{3}(4)^{3}\right)-\left((0)+\frac{3}{2}(0)^{2}-\frac{1}{3}(0)^{3}\right) \\
& =\left(4+\frac{48}{2}-\frac{64}{3}\right) \\
& =\frac{20}{3}
\end{aligned}
\end{aligned}
$$

Example Find the interval on which the curve $y=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$ is concave up.
This curve defines y as a function of x. For a curve to be concave up, we must have $y^{\prime \prime}>0$.

$$
\begin{aligned}
y & =\int_{0}^{x} \frac{1}{1+t+t^{2}} d t \\
y^{\prime} & =\frac{1}{1+x+x^{2}} \\
y^{\prime \prime} & =\frac{\left(1+x+x^{2}\right) \frac{d}{d x}[1]-(1) \frac{d}{d x}\left[1+x+x^{2}\right]}{\left(1+x+x^{2}\right)^{2}} \\
& =\frac{-(1+2 x)}{\left(1+x+x^{2}\right)^{2}}
\end{aligned}
$$

So $y^{\prime \prime}>0$ if $-(1+2 x)>0$, or $x<-1 / 2$.
Here is a sketch:
$\mathrm{y}:=$ Integrate[1/(1+t+t~2), \{t, 0, x\}]
Plot[y, $\{x,-2,2\}]$

