Questions

Example Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places.

$$
\int_{1}^{5} x^{2} e^{-x} d x, n=4
$$

Example Express the limit as a definite integral on the given interval.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sin x_{i} \Delta x, \quad[0, \pi]
$$

Example (5.2.33) The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{2} f(x) d x$
(b) $\int_{0}^{5} f(x) d x$
(c) $\int_{5}^{7} f(x) d x \quad(d) \int_{0}^{9} f(x) d x$

Example Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x
$$

Example Evaluate the integral by interpreting it in terms of areas.
$\int_{-1}^{2}|x| d x$

Solutions

Example Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places.

$$
\int_{1}^{5} x^{2} e^{-x} d x, n=4
$$

The Midpoint Rule is

$$
\int_{a}^{b} f(x) d x \sim \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x
$$

In this case we have $b=5, a=1, n=4$, so $\Delta x=(b-a) / n=4 / 4=1$.
$\overline{x_{1}}=1.5, \overline{x_{2}}=2.5, \overline{x_{3}}=3.5, \overline{x_{4}}=4.5$.

$$
\begin{aligned}
\int_{1}^{5} f(x) d x & \sim\left(f\left(\overline{x_{1}}\right)+f\left(\overline{x_{2}}\right)+f\left(\overline{x_{3}}\right)+f\left(\overline{x_{4}}\right)\right) \Delta x \\
& \sim(f(1.5)+f(2.5)+f(3.5)+f(4.5))(1) \\
\int_{1}^{5} x^{2} e^{-x} d x & \sim(1.5)^{2} e^{-1.5}+(2.5)^{2} e^{-2.5}+(3.5)^{2} e^{-3.5}+(4.5)^{2} e^{-4.5} \\
& =1.6100
\end{aligned}
$$

Example Express the limit as a definite integral on the given interval.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sin x_{i} \Delta x, \quad[0, \pi] . \\
& \int_{0}^{\pi} x \sin x d x
\end{aligned}
$$

Example (5.2.33) The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{2} f(x) d x$
(b) $\int_{0}^{5} f(x) d x$
(c) $\int_{5}^{7} f(x) d x$
(d) $\int_{0}^{9} f(x) d x$

The integrals are represented by the shaded areas. The black areas are above the x axis and so are positive; the red areas are below the x-axis and so are negative.

Example Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x
$$

First, we need to know what the region looks like. we have:

$$
\begin{aligned}
y & =1+\sqrt{9-x^{2}} \\
(y-1)^{2} & =9-x^{2} \\
(y-1)^{2}+x^{2} & =3^{2}
\end{aligned}
$$

which is a circle of radius 3 and center $(0,1)$. Now we can sketch the region:

The integral is given by the sum of the two shaded regions, the light blue region is a quarter of the area of a circle of radius 3 , and the gray region is a rectangle of length 3 and height 1 . Therefore,

$$
\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x=\frac{1}{4} \pi(3)^{2}+(3)(1)=\frac{9}{4} \pi+3 .
$$

Example Evaluate the integral by interpreting it in terms of areas.

$$
\int_{-1}^{2}|x| d x
$$

Here is the region, which is two triangles:

$$
\int_{-1}^{2}|x| d x=\frac{1}{2}(1)(1)+\frac{1}{2}(2)(2)=\frac{5}{2} .
$$

