Questions

Example Your numbers probably won't agree exactly with mine, but your analysis should be similar.
By reading values from the given graph of f, use five rectangles to find a lower estimate and an upper estimate for the area under f from $x=0$ to $x=10$. In each case sketch the rectangles you used. Find new estimates using 10 rectangles in each case.

Example Use Definition 2 to find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

$$
f(x)=\frac{\ln x}{x}, 3 \leq x \leq 10
$$

Definition 2 is: The area of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of the approximating rectangles:

$$
A=\lim _{n \rightarrow \infty} R_{n}
$$

Example Determine a region whose area is equal to the given limit. Do not evaluate the limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}
$$

Solutions

Example Your numbers probably won't agree exactly with mine, but your analysis should be similar.
By reading values from the given graph of f, use five rectangles to find a lower estimate and an upper estimate for the area under f from $x=0$ to $x=10$. In each case sketch the rectangles you used. Find new estimates using 10 rectangles in each case.

The overestimate is: $(2 * 3)+(2 * 4.2)+(2 * 5.2)+(2 * 6.2)+(2 * 7)=51.2$.
The underestimate is: $(2 * 1)+(2 * 3)+(2 * 4.2)+(2 * 5.2)+(2 * 6.2)=39.2$.

The overestimate is: $(1 * 2.2)+(1 * 3)+(1 * 3.6)+(1 * 4.2)+(1 * 4.6)+(1 * 5.2)+(1 * 5.6)+(1 * 6.2)+(1 * 6.5)+(1 * 7)=48.1$. The underestimate is: $(1 * 1)+(1 * 2.3)+(1 * 3)+(1 * 3.6)+(1 * 4.2)+(1 * 4.6)+(1 * 5.2)+(1 * 5.6)+(1 * 6.2)+(1 * 6.5)=42.2$.

Example Use Definition 2 to find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

$$
f(x)=\frac{\ln x}{x}, 3 \leq x \leq 10
$$

Definition 2 is: The area of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of the approximating rectangles:

$$
A=\lim _{n \rightarrow \infty} R_{n}
$$

The best way to do this is to draw a picture, with a single rectangle that represents all the rectangles. I usually don't draw the sketch on the left, but this time I will. The sketch on the right is used to represent all the rectangles we see in the graph on the left without drawing them.

The height of the rectangle is $f\left(x_{i}\right)$ and the width is Δx. The area of the rectangle is therefore $f\left(x_{i}\right) \Delta x$.
If we have n rectangles, then $\Delta x=(b-a) / n=(10-3) / n=7 / n$.
Since we are evaluating at the right endpoint, we know that $x_{i}=a+i \Delta x=3+7 i / n$.
The area of the rectangle is $f\left(x_{i}\right) \Delta x=\frac{\ln (3+7 i / n)}{3+7 i / n} \cdot \frac{7}{n}$.
If we add up the area of all the rectangles we get $\sum_{i=1, n} \frac{\ln (3+7 i / n)}{3+7 i / n} \cdot \frac{7}{n}$.
If we take the limit as the number of partitions (or rectangles) becomes infinite, we get the area under the curve,

$$
\text { Area }=\lim _{n \rightarrow \infty} \sum_{i=1, n} \frac{\ln (3+7 i / n)}{3+7 i / n} \cdot \frac{7}{n}=\lim _{n \rightarrow \infty} \sum_{i=1, n} \frac{7 \ln (3+7 i / n)}{3 n+7 i}
$$

Example Determine a region whose area is equal to the given limit. Do not evaluate the limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}
$$

To solve this problem we need to compare to something. Here are some things we might compare to:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \frac{(b-a)}{n} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+i \frac{(b-a)}{n}\right) \frac{(b-a)}{n}
\end{aligned}
$$

The last form, although maybe initially the most intimidating, is the most useful.

Here is a colour coded comparison:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+i \frac{(b-a)}{n}\right) \frac{(b-a)}{n} \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}
\end{aligned}
$$

The green tells us $b-a=2$.
The red tells us $b-a=2$ and $a=5$. This means $b=7$.
The blue tells us that $f(x)=x^{10}$.
Putting it all together, we have that the limit is equal to the area under the curve $f(x)=x^{10}$ from $x=5$ to $x=7$.

