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Questions

Example A farmer wants to fence an area of 1.5 million square feet in a rectangle field and then divide it in half with a
fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence?

Example A box with a square base and open top must have a volume of 32,000 cubic centimeters. Find the dimensions
of the box that minimize the amount of material used.

Example If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible
volume of the box.

Example Find the points on the ellipse 4x2 + y2 = 4 that are farthest from the point (1, 0).

Example A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an
equilateral triangle. How should the wire be cut so that the total area is (a) a maximum? (b) a minimum?

Solutions

Example A farmer wants to fence an area of 1.5 million square feet in a rectangle field and then divide it in half with a
fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the cost of the fence?

This is an optimization problem where we want to optimize the amount of fence used.

We begin with a diagram:

The width of the fenced region is x, and the length is y.

The total amount of fence used is given by P = 2x + 3y. This is what we want to minimize, but we have two variables
and we only know how to minimize a function of one variable. We need to introduce another condition to eliminate one
of the variables.
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The area of the fenced region is A = 1.5× 106 = xy. We can therefore write x = 1.5× 106/y and then express the amount
of fence used as

P (y) =
3× 106

y
+ 3y.

The domain of P is y > 0.

The minimum will occur when P ′(y) = 0.

P ′(y) = −3× 106

y2
+ 3

Setting this equal to zero and solving for y, we find y = ±1000. We can exclude the value less than zero, since y must be
greater than zero (it is a length). So we have an extrema at y = 1000. Let’s check we have an absolute minimum:

P ′′(y) =
6× 106

y3

Since P ′′(y) > 0 for all y > 0, P (y) is always concave up for y > 0, and we have found an absolute minimum.

The farmer should build a fence that has three parallel side of length 1000 feet, and the remaining two parallel sides should
be of length 1500 feet.

Example A box with a square base and open top must have a volume of 32,000 cubic centimeters. Find the dimensions
of the box that minimize the amount of material used.

Diagram:
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The volume is V = x2y = 32000.
The surface area is S = 4xy + x2.
We want to minimize the surface area.
Use the volume relation to get surface area as a function of one variable:

V = x2y = 32000 −→ y =
32000

x2
.

S(x) = 4x

(
32000

x2

)
+ x2 =

128000

x
+ x2.

The domain is x > 0.

Extrema occur when the first derivative is equal to zero, so we need to solve S′(x) = 0 for x.

S′(x) = −128000

x2
+ 2x = 0,

128000

x2
= 2x,

64000 = x3,

40 = x,

We need to check that this is an absolute minimum. We can do that using the second derivative test.

S′′(x) =
256000

x3
+ 2,

Since S′′(x) > 0 for all x > 0, S is concave up on the enitre domain, and therefore we know the function S(x) has an
absolute minimum at x = 40.

Therefore, a box with no top and square base with a volume of 32,000 cubic centimeters has a minimum surface area if
the base is a square of side 40 cm and the height is 20 cm.

Example If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible
volume of the box.

Diagram:
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The volume is V = x2y.
The surface area is S = 4xy + x2 = 1200.
We want to maximize the volume.
Use the surface area relation to get volume as a function of one variable:

S = 4xy + x2 = 1200 −→ y =
1200− x2

4x
.

V (x) = x2

(
1200− x2

4x

)
=

1

4
(1200x− x3).

From the geometry of the situation, x > 0 since the volume is zero if x = 0.
Also, x <

√
1200 since the volume is also zero there. So the domain is x ∈ [0,

√
1200]. If we find a critical point inside this

interval with a positive volume, then we will have found an absolute maximum since the volume is zero at the endpoints
of the interval, using the closed interval method.

To find the extrema, solve V ′(x) = 0 for x:
V ′(x) = 1

4 (1200− 3x2) = 0.

1200− 3x2 = 0

x =

√
1200

3
=
√

400 = 20

Therefore, a box with no top and square base made from 1200 cm2 of material will have a maximum volume of 1
4 (1200(20)−

(20)3) = 4000 cm3 when the base is a square of length 20 cm and the height is 10 cm.

Example Find the points on the ellipse 4x2 + y2 = 4 that are farthest from the point (1, 0).

Here is a sketch of the ellipse, along with the points of interest.

The point (x, y) is somewhere along the ellipse. From the geometry, we can see that two points will be farthest from (1, 0),
one point in the second quadrant, one in the third. They will both have the same x value.

The distance between the point (1, 0) and (x, y) is given by: d =
√

(1− x)2 + (0− y)2.
If we minimize the distance squared, we will also minimize the distance. Therefore, work with
Q = d2 = (1− x)2 + y2.

This is a function of two variables, so we need to eliminate one, since we only know how to minimize a function of one
variable. We can use the equation of the ellipse, 4x2 + y2 = 4 −→ y2 = 4− 4x2, to help.
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Q(x) = (1− x)2 + (4− 4x2) = 5− 2x− 3x2.

Q(x) = 5− 2x− 3x2

Q′(x) = −2− 6x = 0

−6x = 2

x = −1

3

We know this will produce an absolute maximum since Q is a parabola that opens down.

The two points which are furthest away from (1, 0) are (1/3,
√

32/9) and (1/3,−
√

32/9).

Example A piece of wire 10 m long is cut into two pieces. One piece is bent into a square and the other is bent into an
equilateral triangle. How should the wire be cut so that the total area is (a) a maximum? (b) a minimum?

First, some diagrams:

The length of wire is split into two pieces, one of length x, the other of length y.

We must have x + y = 10.

The length of wire x is bent into an equalateral triangle, the length of wire y is bent into a square.

We wish to minimize the area enclosed by the square and rectangle.

Area triangle =

√
3

4

(x
3

)2
=

√
3

36
x2.

Area of square =
(y

4

)2
=

y2

16
.
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Area we want to minimize is A =

√
3

36
x2 +

y2

16
.

We need to eliminate x or y from this equation, since we only know how to optimize a function of one variable. Since
x + y = 10, we have x = 10− y, and we can write

A(y) =

√
3

36
(10− y)2 +

y2

16
, y ∈ [0, 10].

Since A(y) is continuous on a closed interval, let’s use the closed interval method to determine the absolute max and
absolute min.

Solve A′(y) = 0 for y:

A′(y) =

√
3

36
(2)(10− y)(−1) +

y

8

0 = −
√

3

18
(10− y) +

y

8

0 = −10
√

3

18
+

(√
3

18
+

1

8

)
y

0 = −10
√

3

18
+

(
8
√

3 + 18

18 · 8

)
y

y =
5
√

3

9
·
(

18 · 8
8
√

3 + 18

)
=

40
√

3

4
√

3 + 9
∼ 4.34965

A(0) =

√
3

36
(10− 0)2 +

02

16
=

100
√

3

36
∼ 4.81125 (triangle only)

A(4.34965) =

√
3

36
(10− 4.34965)2 +

4.349652

16
= 2.71853 (both triangle and square)

A(10) =

√
3

36
(10− 10)2 +

102

16
=

100

16
∼ 6.25 (square only)

The absolute maximum area is produced when the entire wire is used to produce the square.

To get the absolute minimum area, the wire should be cut so that a length of
40
√

3

4
√

3 + 9
m forms the square.
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