## Questions

**Example** Find the local maximum and minimum values of  $f(x) = x^5 - 5x + 3$  using both the First and Second Derivative Tests. Which method do you prefer?

**Example** For  $f(x) = \ln(1 - \ln x)$ ,

- (a) find any vertical and horizontal asymptotes
- (b) find the intervals of increase or decrease
- (c) find any local maximum or minimum values
- (d) find the intervals of concavity and any inflection points
- (e) sketch the graph of f(x)

## Solutions

**Example** Find the local maximum and minimum values of  $f(x) = x^5 - 5x + 3$  using both the First and Second Derivative Tests. Which method do you prefer?

First derivative test:

• Intervals of Increasing/Decreasing:

Solve  $f'(c) = 5c^4 - 5 = 0$ . The real valued solutions to this equation are c = -1, +1. These are the only critical numbers for f'(x) since f'(x) exists for all x.

Write down a table showing where f(x) is increasing and decreasing:

| Interval       | f'(a) (a is in interval)    | Sign of $f'$ | f          |
|----------------|-----------------------------|--------------|------------|
| $(-\infty,-1)$ | $f'(-2) = 5(-2)^4 - 5 = 75$ | +            | increasing |
| (-1, 1)        | $f'(0) = 5(0)^4 - 5 = -5$   | —            | decreasing |
| $(1,\infty)$   | $f'(2) = 5(2)^4 - 5 = 75$   | +            | increasing |

• Max/Min:

f goes from increasing to decreasing at  $x = -1 \longrightarrow \text{local max}$ .  $f(-1) = (-1)^5 - 5(-1) + 3 = 7$ . Point: (-1, 7) f goes from decreasing to increasing at  $x = +1 \longrightarrow \text{local min}$ .  $f(+1) = (+1)^5 - 5(+1) + 3 = -1$ . Point: (+1, -1)

Second derivative test:

Solve  $f'(c) = 5c^4 - 5 = 0$ . The real valued solutions to this equation are c = -1, +1. These are the only critical numbers for f'(x) since f'(x) exists for all x.

We then evaluate the second derivative at the critical numbers to determine if we have a max or min.  $f''(x) = 20x^3$   $f''(-1) = 20(-1)^3 < 0 \longrightarrow f(x)$  is concave down at x = -1, therefore we have a local max at x = -1.  $f(-1) = (-1)^5 - 5(-1) + 3 = 7$ . Point: (-1, 7) $f''(+1) = 20(+1)^3 > 0 \longrightarrow f(x)$  is concave up at x = +1, therefore we have a local min at x = +1.  $f(+1) = (+1)^5 - 5(+1) + 3 = -1$ . Point: (+1, -1)

I prefer the Second Derivative Test, since it is quicker if it works. However, I also like the First Derivative Test since it reminds us about the importance of the first derivative as to increasing or decreasing.

**Example** For  $f(x) = \ln(1 - \ln x)$ ,

- (a) find any vertical and horizontal asymptotes
- (b) find the intervals of increase or decrease
- (c) find any local maximum or minimum values
- (d) find the intervals of concavity and any inflection points
- (e) sketch the graph of f(x)

The goal here is to sketch the function using calculus, without the aid of a computer. We will need the derivatives, so let's get them first:

$$\begin{split} f(x) &= \ln(1 - \ln x) \\ f'(x) &= \frac{d}{dx} [\ln(1 - \ln x)] \\ &= \frac{1}{1 - \ln x} \frac{d}{dx} [1 - \ln x] \text{ (chain rule)} \\ &= \frac{1}{1 - \ln x} \left( -\frac{1}{x} \right) \\ &= -\frac{1}{x(1 - \ln x)} \\ f''(x) &= -\frac{d}{dx} \left[ \frac{1}{x(1 - \ln x)} \right] \\ &= -\frac{x(1 - \ln x) \frac{d}{dx} [1] - 1 \frac{d}{dx} [x(1 - \ln x)]}{x^2 (1 - \ln x)^2} \\ &= -\frac{x(1 - \ln x)(0) - (1 - \ln x) \frac{d}{dx} [x] - x \frac{d}{dx} [(1 - \ln x)]}{x^2 (1 - \ln x)^2} \\ &= -\frac{-(1 - \ln x) - x \left( -\frac{1}{x} \right)}{x^2 (1 - \ln x)^2} \\ &= -\frac{-(1 - \ln x) - x \left( -\frac{1}{x} \right)}{x^2 (1 - \ln x)^2} \\ &= -\frac{-1 + \ln x + 1}{x^2 (1 - \ln x)^2} \\ &= -\frac{\ln x}{x^2 (1 - \ln x)^2} \end{split}$$

• Horizontal Asymptotes:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( \ln(1 - \ln x) \right) \longrightarrow \ln(-\infty)$$

To get the horizontal asymptotes, we need to know what happens to our function as  $x \to \infty$  and  $x \to -\infty$ . We tried to do that above, and ran into a problem, since  $\ln(-\infty)$  is not defined. This clues us in that maybe we should look at the domain of our function before proceeding.

Since  $\ln x$  is only defined for x > 0, we know our function must have x > 0 due to the red part in  $f(x) = \ln(1 - \ln x)$ . Also, because of the blue part of  $f(x) = \ln(1 - \ln x)$ , we must have that  $1 - \ln x > 0$ . This means

 $1 - \ln x > 0$  $\ln x < 1$  $x < e^{1} = e$  So the domain of our function is 0 < x < e, and there are no horizontal asymptotes since the function is not defined outside this region.

• Vertical Asymptotes:

 $\lim f(x) = \pm \infty \rightsquigarrow x = a$  is a vertical asymptote

Our function f(x) is continuous, so the only place we might have a vertical asymptote is is at the endpoints. Let's check them:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \ln(1 - \ln x) \to \ln(1 - (-\infty)) \to +\infty$$
$$\lim_{x \to e} f(x) = \lim_{x \to e} \ln(1 - \ln x) \to \ln(1 - 1) \to \ln 0 \to -\infty$$

We have vertical asymptotes at both endpoints, x = 0 and x = e.

• Intervals of Increasing/Decreasing:

Solve  $f'(c) = -\frac{1}{c(1-\ln c)} = 0$ . This condition does not occur inside our interval. Also, f'(x) exists for all x. There are no critical numbers for f'(x).

Write down a table showing where f(x) is increasing and decreasing:

Interval
$$f'(a)$$
 (a is in interval)Sign of  $f'$ f $(0,e)$  $f'(1) = -\frac{1}{(1)(1-\ln 1)} = -1$ -decreasing

## • Max/Min:

Since the function is always decreasing on (0, e), there are no max or mins.

• Intervals of Concave Up/Concave Down:

Solve  $f''(c) = -\frac{\ln c}{c^2(1-\ln c)^2} = 0$ . The only solution is c = +1, since the numerator is zero there and the denominator is finite. This is the only critical number for f''(x) since f''(x) exists for all x.

Write down a table showing where f(x) is concave up and down. We will need to use the fact that  $\ln x < 0$  if x < 1, and  $\ln x > 0$  is x > 1 to help us get the sign of f'' is the intervals.

| Interval | f''(a) (a is in interval)                                                     | Sign of $f''$ | f            |
|----------|-------------------------------------------------------------------------------|---------------|--------------|
| (0, 1)   | $\int f''(1/2) = -\frac{\ln 1/2}{(1/2)^2 (1 - \ln 1/2)^2} = -\frac{-}{+} > 0$ | +             | Concave Up   |
|          | $\int f''(3/2) = -\frac{\ln 3/2}{(3/2)^2 (1 - \ln 3/2)^2} = -\frac{+}{+} < 0$ | _             | Concave Down |

• Points of Inflection:

The function f goes from concave up to concave down at  $x = 1 \longrightarrow$  point of inflection.  $f(1) = \ln(1 - \ln 1) = \ln(1 - 0) = 0$ . Point: (1, f(1)) = (1, 0) (Hey! This means x = 1 is a root of f!)

• Sketch: Putting everything together from our detailed analysis, we get

