Questions

Example Find the absolute maximum and absolute minimum values of $f(x)=\frac{x}{x^{2}+1}$ on the interval $[0,2]$
Example Find the absolute maximum and absolute minimum values of $f(x)=\frac{\ln x}{x}$ on the interval $[1,3]$
Example If a and b are positive numbers, find the maximum value of $f(x)=x^{a}(1-x)^{b}, 0 \leq x \leq 1$.

Solutions

Example Find the absolute maximum and absolute minimum values of $f(x)=\frac{x}{x^{2}+1}$ on the interval $[0,2]$
Absolute extrema on a closed interval are found using the Closed Interval Method:

1) Find the values of f at the critical numbers of f in (a, b).
2) Find the values of f at the endpoints of the interval.
3) The largest of the values from 1) and 2) is the absolute maximum; the smallest of these values is the absolute minimum.

We need the critical numbers. We need to find where $f^{\prime}(c)=0$ and where $f^{\prime}(x)$ does not exist. Since $x^{2}+1 \neq 0$ for real valued x, the derivative always exists.

$$
\begin{aligned}
f(x) & =\frac{x}{x^{2}+1} \\
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{x}{x^{2}+1}\right] \\
& =\frac{\left(x^{2}+1\right) \frac{d}{d x}[x]-x \frac{d}{d x}\left[x^{2}+1\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)(1)-x(2 x)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

For $f^{\prime}(c)=0$, the numerator must equal zero,

$$
\begin{aligned}
f^{\prime}(c)=0 & =\frac{-c^{2}+1}{\left(c^{2}+1\right)^{2}} \\
0 & =-c^{2}+1 \\
c^{2} & =1 \\
c & = \pm 1
\end{aligned}
$$

We have shown that $f^{\prime}(1)=0$ and $f^{\prime}(-1)=0$. The critical numbers are $+1,-1$. Only +1 is in the interval $(0,2)$.

Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:

$$
\begin{aligned}
f(+1) & =\frac{1}{(1)^{2}+1}=\frac{1}{2} \\
f(0) & =\frac{0}{(0)^{2}+1}=0 \\
f(2) & =\frac{2}{(2)^{2}+1}=\frac{2}{5}
\end{aligned}
$$

The largest number is $1 / 2$, so this is the absolute max and it occurs at $x=+1$. The smallest number is 0 , so this is the absolute min and it occurs at $x=0$.

Example Find the absolute maximum and absolute minimum values of $f(x)=\frac{\ln x}{x}$ on the interval $[1,3]$
Absolute extrema on a closed interval are found using the Closed Interval Method:

1) Find the values of f at the critical numbers of f in (a, b).
2) Find the values of f at the endpoints of the interval.
3) The largest of the values from 1) and 2) is the absolute maximum; the smallest of these values is the absolute minimum.

We need the critical numbers, which means we need to find where $f^{\prime}(c)=0$ and where $f^{\prime}(x)$ does not exist. The only place we could have the derivative not defined is for $x \leq 0$; luckily, this is outside of the interval $(1,3)$ so we don't need to worry about the derivative being undefined.

$$
\begin{aligned}
f(x) & =\frac{\ln x}{x} \\
f^{\prime}(x) & =\frac{d}{d x}\left[\frac{\ln x}{x}\right] \\
& =\frac{(x) \frac{d}{d x}[\ln x]-\ln x \frac{d}{d x}[x]}{(x)^{2}} \\
& =\frac{(x)\left(\frac{1}{x}\right)-\ln x(1)}{x^{2}} \\
& =\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

For $f^{\prime}(c)=0$, the numerator must equal zero,

$$
\begin{aligned}
f^{\prime}(c)=0 & =\frac{1-\ln c}{c^{2}} \\
0 & =1-\ln c \\
\ln c & =1 \\
c & =e
\end{aligned}
$$

We have shown that $f^{\prime}(e)=0$. The critical number is e, which lies in the interval $(2,3)$.

Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:

$$
\begin{aligned}
& f(e)=\frac{\ln e}{e}=\frac{1}{e} \\
& f(1)=\frac{\ln 1}{1}=0 \\
& f(3)=\frac{\ln 3}{3}
\end{aligned}
$$

The smallest number is 0 , so this is the absolute min and it occurs at $x=1$.
It is difficult to determine if $1 / e>\ln 3 / 3$ without resorting to a calculator, or more powerful techniques we have yet to learn. But we can argue based on the properties of derivatives that we must have $1 / e>\ln 3 / 3$.

Since the function is continuous in the interval and has a minimum at $x=1$, and the derivative at $x=e$ is zero means the tangent line is horizontal at $x=e$, and there are no other critical numbers for the function, the function must lie below its tangent line near $x=e$. Read that again and see why are the conditions listed are necessary. You might want to draw the function above the tangent line at $x=e$ and see how that leads to contradictions. The function must therefore look something like:

Therefore, the function has an absolute max of $1 / e$ at $x=e$.
Example If a and b are positive numbers, find the maximum value of $f(x)=x^{a}(1-x)^{b}, 0 \leq x \leq 1$.
The derivative will always exist since a and b are positive (if they could be negative, we could have a denominator other than 1).

The only critical numbers will be if $f^{\prime}(c)=0$:

$$
\begin{aligned}
f(x) & =x^{a}(1-x)^{b} \\
f^{\prime}(x) & =\frac{d}{d x}\left[x^{a}(1-x)^{b}\right] \\
& =x^{a} \frac{d}{d x}\left[(1-x)^{b}\right]+(1-x)^{b} \frac{d}{d x}\left[x^{a}\right] \\
& =b x^{a}(1-x)^{b-1}(-1)+a(1-x)^{b} x^{a-1} \\
& =a(1-x)^{b} x^{a-1}-b x^{a}(1-x)^{b-1} \\
& =a(1-x)^{b} x^{a} x^{-1}-b x^{a}(1-x)^{b}(1-x)^{-1} \\
& =(1-x)^{b} x^{a}\left(a x^{-1}-b(1-x)^{-1}\right) \\
& =(1-x)^{b} x^{a}\left(\frac{a}{x}-\frac{b}{1-x}\right) \\
& =(1-x)^{b} x^{a}\left(\frac{a(1-x)-b x}{x(1-x)}\right) \\
& =(1-x)^{b-1} x^{a-1}(a-(a+b) x)
\end{aligned}
$$

The critical number is therefore $c=\frac{a}{a+b}$.
Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:

$$
\begin{aligned}
f\left(\frac{a}{a+b}\right) & =\left(\frac{a}{a+b}\right)^{a}\left(1-\left(\frac{a}{a+b}\right)\right)^{b} \\
& =\left(\frac{a}{a+b}\right)^{a}\left(\frac{b}{a+b}\right)^{b}>0 \text { (since } a \text { and } b \text { are positive) } \\
f(0) & =0^{a}(1-0)^{b}=0 \\
f(1) & =1^{a}(1-1)^{b}=0
\end{aligned}
$$

Therefore, the maximum value of $f(x)=x^{a}(1-x)^{b}, \quad 0 \leq x \leq 1$ is $\left(\frac{a}{a+b}\right)^{a}\left(\frac{b}{a+b}\right)^{b}$ which occurs at $x=\frac{a}{a+b}$.

