Questions

Example Given $x y+2 x+3 x^{2}=4$.
a) Find y^{\prime} by implicit differentiation.
b) Solve the equation explicitly for y and differentiate to get $y \prime$ explicitly in terms of x.
c) Verify the solutions in part a) and b) are the same.

Example Find $d y / d x$ by implicit differentiation, $x^{2} y+x y^{2}=3 x$.
Example Graph the curve with equation $y\left(y^{2}-1\right)(y-2)=x(x-1)(x-2)$. At how many points does this curve have horizontal tangents? Estimate the x-coordinates of these points. Find equations of the tangents lines at the points $(0,1)$ and $(0,2)$. Find the exact x-coordinates of the points in part a).

Solutions

Example Given $x y+2 x+3 x^{2}=4$.
a) Find y^{\prime} by implicit differentiation.
b) Solve the equation explicitly for y and differentiate to get $y \prime$ explicitly in terms of x.
c) Verify the solutions in part a) and b) are the same.

First, get the derivative implicitly. We think of y as a function of x when taking the derivative.

$$
\begin{align*}
\frac{d}{d x}\left[x y+2 x+3 x^{2}\right. & =4] \\
\frac{d}{d x}[x y]+2 \frac{d}{d x}[x]+3 \frac{d}{d x}\left[x^{2}\right] & =\frac{d}{d x}[4] \\
y \frac{d}{d x}[x]+x \frac{d}{d x}[y]+2(1)+3(2 x) & =0 \\
y(1)+x \frac{d y}{d x}+2+6 x & =0 \\
\frac{d y}{d x} & =\frac{-2-6 x-y}{x} \tag{1}
\end{align*}
$$

This is an implicit form for $d y / d x$, which is an acceptable way to leave the solution since the original equation was implicit.

Now, let's solve for y to get an explicit equation, and get the derivative explicitly.

$$
\begin{align*}
x y+2 x+3 x^{2} & =4 \text { (implicit function) } \\
y & =\frac{4-2 x-3 x^{2}}{x} \text { (explicit function) } \tag{2}\\
\frac{d y}{d x} & =\frac{d}{d x}\left[\frac{\left.4-2 x-3 x^{2}\right]}{x}\right] \\
& =\frac{x \frac{d}{d x}\left(4-2 x-3 x^{2}\right)-\left(4-2 x-3 x^{2}\right) \frac{d}{d x}[x]}{x^{2}} \\
& =\frac{x(-2-6 x)-\left(4-2 x-3 x^{2}\right)(1)}{x^{2}} \\
& =\frac{-2 x-6 x^{2}-4+2 x+3 x^{2}}{x^{2}} \\
& =\frac{-3 x^{2}-4}{x^{2}}
\end{align*}
$$

To show these are the same, we can substitute Eq. (2) into Eq. (1).

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-2-6 x-y}{x} \\
& =\frac{-2-6 x-\left(\frac{4-2 x-3 x^{2}}{x}\right)}{x} \\
& =\frac{\left(\frac{-2 x-6 x^{2}-4+2 x+3 x^{2}}{x}\right)}{x}=\frac{\left(\frac{-3 x^{2}-4}{x}\right)}{x}=\frac{-3 x^{2}-4}{x^{2}}
\end{aligned}
$$

Example Find $d y / d x$ by implicit differentiation, $x^{2} y+x y^{2}=3 x$.

$$
\begin{aligned}
& x^{2} y+x y^{2}=3 x \\
& \frac{d}{d x}\left[x^{2} y+x y^{2}=3 x\right] \\
& \frac{d}{d x}\left[x^{2} y\right]+\frac{d}{d x}\left[x y^{2}\right]=\frac{d}{d x}[3 x] \\
& x^{2} \frac{d}{d x}[y]+y \frac{d}{d x}\left[x^{2}\right]+x \frac{d}{d x}\left[y^{2}\right]+y^{2} \frac{d}{d x}[x]=3 \\
& x^{2} \frac{d y}{d x}+y(2 x)+x\left(2 y \frac{d y}{d x}\right)+y^{2}=3 \\
& \frac{d y}{d x}\left(x^{2}+2 x y\right)+2 x y+y^{2}=3 \\
& \frac{d y}{d x}=\frac{3-2 x y-y^{2}}{x^{2}+2 x y}
\end{aligned}
$$

This is an implicit formula for the derivative.
Example Graph the curve with equation $y\left(y^{2}-1\right)(y-2)=x(x-1)(x-2)$. At how many points does this curve have horizontal tangents? Estimate the x-coordinates of these points. Find equations of the tangents lines at the points $(0,1)$ and $(0,2)$. Find the exact x-coordinates of the points in part a).

ContourPlot $[y(y \wedge 2-1)(y-2)==x(x-1)(x-2),\{x,-1,4\},\{y,-2,3\}]$

From the graph, we see the figure has horizontal tangents at eight separate points. A rough guess would be that these horizontal tangents occur at $x=0.5$ and $=1.5$.

The tangent line has equation $y-y_{0}=m\left(x-x_{0}\right)$ where $\left(x_{0}, y_{0}\right)$ is a point on the tangent line and m is the slope of the tangent, i.e., $m=d y / d x$ evaluated at the point where the tangent line touches the curve.

So we need a derivative,

$$
\begin{aligned}
& y\left(y^{2}-1\right)(y-2)=x(x-1)(x-2) \\
& 2 y-y^{2}-2 y^{3}+y^{4}=2 x-3 x^{2}+x^{3}(\text { expand to make differentiating easier) } \\
& \frac{d}{d x}\left[2 y-y^{2}-2 y^{3}+y^{4}=2 x-3 x^{2}+x^{3}\right] \text { (implicitly differentiate) } \\
& \frac{d}{d x}[2 y]-\frac{d}{d x}\left[y^{2}\right]-2 \frac{d}{d x}\left[y^{3}\right]+\frac{d}{d x}\left[y^{4}\right]=\frac{d}{d x}\left[2 x-3 x^{2}+x^{3}\right] \\
& 2 \frac{d y}{d x}-2 y \frac{d y}{d x}-6 y^{2} \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=2-6 x+3 x^{2} \\
& \frac{d y}{d x}\left(2-2 y-6 y^{2}+4 y^{3}\right)=2-6 x+3 x^{2} \\
& \frac{d y}{d x}=\frac{2-6 x+3 x^{2}}{2-2 y-6 y^{2}+4 y^{3}}
\end{aligned}
$$

At $(0,1),\left.\frac{d y}{d x}\right|_{(0,1)}=\frac{2-6(0)+3(0)^{2}}{2-2(1)-6(1)^{2}+4(1)^{3}}=-1$.
The equation of the tangent line at $(0,1)$ is $y-1=-1(x-0)$, or $y=-x+1$.
At $(0,2),\left.\frac{d y}{d x}\right|_{(0,2)}=\frac{2-6(0)+3(0)^{2}}{2-2(2)-6(2)^{2}+4(2)^{3}}=\frac{1}{3}$.
The equation of the tangent line at $(0,1)$ is $y-2=\frac{1}{3}(x-0)$, or $y=x / 3+2$.
A plot of the tangent lines looks like the following:

The exact x coordinates of the horizontal tangents occur when the $d y / d x=0$, which occurs when $2-6 x+3 x^{2}=0$. Using the quadratic equation to solve this we find $x=1 \pm \frac{\sqrt{3}}{3}$. The decimal value of these roots is 0.42265 and 1.57735 , so our guesses in part a) were not far off.

My fun curve is the following, which has lots of horizontal tangents.

```
ContourPlot[
    Sin[y](y^2 - 1)(x Cos[y^2] - 2) == Cos[x^2](x - 1)(Log[Abs[x^5]] - 2), {x, -7, 7}, {y, -7, 7},
    AxesLabel -> {"x", "y"}, PlotPoints -> 40, ImageSize -> {600, Automatic}]
```


