Questions

Example Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+1\right)$ in two ways: by using the product rule and by performing the multiplication first. Do your answers agree?

Example Differentiate $\frac{e^{x}}{1+x}$.
Example Differentiate $f(x)=\frac{a x+b}{c x+d}$.

Solutions

Example Find the derivative of $y=\left(x^{2}+1\right)\left(x^{3}+1\right)$ in two ways: by using the product rule and by performing the multiplication first. Do your answers agree?

$$
\begin{aligned}
y & =\left(x^{2}+1\right)\left(x^{3}+1\right) \\
\frac{d y}{d x} & =\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{3}+1\right)\right] \\
& =\left(x^{2}+1\right) \frac{d}{d x}\left[\left(x^{3}+1\right)\right]+\left(x^{3}+1\right) \frac{d}{d x}\left[\left(x^{2}+1\right)\right] \\
& =\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+1\right)(2 x) \\
& =\left(3 x^{4}+3 x^{2}\right)+\left(2 x^{4}+2 x\right) \\
& =5 x^{4}+3 x^{2}+2 x \\
y & =\left(x^{2}+1\right)\left(x^{3}+1\right) \\
& =x^{5}+x^{3}+x^{2}+1 \\
\frac{d y}{d x} & =\frac{d y}{d x}\left[x^{5}+x^{3}+x^{2}+1\right] \\
& =5 x^{4}+3 x^{2}+2 x
\end{aligned}
$$

The two answers, as expected, agree.
Example Differentiate $\frac{e^{x}}{1+x}$.

$$
\begin{aligned}
y & =\frac{e^{x}}{1+x} \\
\frac{d y}{d x} & =\frac{d}{d x}\left[\frac{e^{x}}{1+x}\right] \\
& =\frac{(1+x) \frac{d}{d x}\left[e^{x}\right]-e^{x} \frac{d}{d x}[1+x]}{(1+x)^{2}} \text { (quotient rule) } \\
& =\frac{(1+x) e^{x}-e^{x}[1]}{(1+x)^{2}} \\
& =\frac{x e^{x}}{(1+x)^{2}}
\end{aligned}
$$

Example Differentiate $f(x)=\frac{a x+b}{c x+d}$.

$$
\begin{aligned}
f(x) & =\frac{a x+b}{c x+d} \\
\frac{d}{d x} f(x) & =\frac{d}{d x}\left[\frac{a x+b}{c x+d}\right] \\
& =\frac{(c x+d) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}(c x+d)}{(c x+d)^{2}} \\
& =\frac{(c x+d)(a)-(a x+b)(c)}{(c x+d)^{2}} \\
& =\frac{(a c x+d a)-(a c x+b c)}{(c x+d)^{2}}=\frac{d a-b c}{(c x+d)^{2}}
\end{aligned}
$$

