Questions

Example Find a formula for the inverse of the function $f(x)=\frac{4 x-1}{2 x+3}$.
Example Find a formula for the inverse of the function $f(x)=5-4 x^{3}$.
Example Find a formula for the inverse of the function $y=\frac{1+e^{x}}{1-e^{x}}$
Example Graph the given functions on a common screen. How are these graphs related?

$$
y=\log _{1.5} x, \quad y=\ln x, \quad y=\log _{10} x, \quad y=\log _{50} x
$$

Example Starting with the graph of $y=\ln x$, find the equation of the graph that results from
a) shifting 3 units upward,
b) shifting 3 units to the left,
c) reflecting about the x-axis,
d) reflecting about the y-axis,
e) reflecting about the line $y=x$,
f) reflecting about the x-axis and then about the line $y=x$,
g) reflecting about the y-axis and then about the line $y=x$.

Solutions

Example Find a formula for the inverse of the function $f(x)=\frac{4 x-1}{2 x+3}$.
There are three steps to finding the inverse of a function:
Step 1) $f(x)=y=\frac{4 x-1}{2 x+3}$.
Step 2) Solve for x in terms of y :

$$
\begin{aligned}
y & =\frac{4 x-1}{2 x+3} \\
y(2 x+3) & =4 x-1 \\
2 x y-4 x & =-3 y-1 \\
x(2 y-4) & =-3 y-1 \\
x & =\frac{-3 y-1}{2 y-4} \\
x & =\frac{3 y+1}{4-2 y}
\end{aligned}
$$

Step 3) Interchange x and y. This gives us $y=f^{-1}(x)=\frac{3 x+1}{4-2 x}$.

Let's verify that we have the correct solution by checking the cancellation equations:

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f\left(\frac{3 x+1}{4-2 x}\right) \\
& =\frac{4\left(\frac{3 x+1}{4-2 x}\right)-1}{2\left(\frac{3 x+1}{4-2 x}\right)+3} \\
& =\frac{\frac{12 x+4}{4-2 x}-1}{\frac{6 x+2}{4-2 x}+3} \\
& =\frac{\frac{12 x+4}{4-2 x}-\frac{4-2 x}{4-2 x}}{\frac{6 x+2}{4-2 x}+\frac{12-6 x}{4-2 x}} \\
& =\frac{\left(\frac{12 x+4-4+2 x}{4-2 x}\right)}{\left(\frac{6 x+2+12-6 x}{4-2 x}\right)} \\
& =\frac{\left(\frac{14 x}{4-2 x}\right)}{\left(\frac{14}{4-2 x}\right)} \\
& =\frac{14 x}{14} \\
f^{-1}\left(f^{-1}(x)\right) & =x \\
f^{-1}(f(x)) & =\frac{f^{-1}\left(\frac{4 x-1}{2 x+3}\right)}{f^{-1}(f(x))} \\
& =\frac{3}{2 x+3}+1 \\
& =\frac{\frac{4 x-1}{4-2 \frac{4 x-1}{2 x+3}}}{\left(\frac{12 x+12-8 x+2}{2 x+3}\right)} \\
& =\frac{\frac{12 x-3}{2 x+3}+1}{4-\frac{8 x-2}{2 x+3}} \\
& \frac{12 x-3}{2 x+3}+\frac{2 x+3}{2 x+3}-\frac{8 x-3}{2 x+3} \\
& \left.=\frac{14 x+2 x+3}{2 x+3}\right) \\
& =1
\end{aligned}
$$

So the cancellation conditions are satisfied, and we have found the inverse function correctly.
Example Find a formula for the inverse of the function $f(x)=5-4 x^{3}$.

There are three steps to finding the inverse of a function:
Step 1) $f(x)=y=5-4 x^{3}$.

Step 2) Solve for x in terms of y :

$$
\begin{aligned}
y & =5-4 x^{3} \\
y-5 & =-4 x^{3} \\
\frac{5-y}{4} & =x^{3} \\
\left(\frac{5-y}{4}\right)^{1 / 3} & =x \\
x & =\left(\frac{5-y}{4}\right)^{1 / 3}
\end{aligned}
$$

Step 3) Interchange x and y. This gives us $y=f^{-1}(x)=\left(\frac{5-x}{4}\right)^{1 / 3}$.
Let's verify that we have the correct solution by checking the cancellation equations:

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f\left(\left(\frac{5-x}{4}\right)^{1 / 3}\right) \\
& =5-4\left(\left(\frac{5-x}{4}\right)^{1 / 3}\right)^{3} \\
& =5-4\left(\frac{5-x}{4}\right) \\
& =5-(5-x) \\
& =5-5+x \\
f\left(f^{-1}(x)\right) & =x \\
f^{-1}(f(x)) & =f^{-1}\left(5-4 x^{3}\right) \\
& =\left(\frac{5-\left(5-4 x^{3}\right)}{4}\right)^{1 / 3} \\
& =\left(\frac{5-5+4 x^{3}}{4}\right)^{1 / 3} \\
& =\left(\frac{4 x^{3}}{4}\right)^{1 / 3} \\
& =\left(x^{3}\right)^{1 / 3} \\
f^{-1}(f(x)) & =x
\end{aligned}
$$

So the cancellation conditions are satisfied, and we have found the inverse function correctly.
Example Find a formula for the inverse of the function $y=\frac{1+e^{x}}{1-e^{x}}$
There are three steps to finding the inverse of a function:
Step 1) $f(x)=y=\frac{1+e^{x}}{1-e^{x}}$. This was already done for us.

Step 2) Solve for x in terms of y :

$$
\begin{aligned}
y & =\frac{1+e^{x}}{1-e^{x}} \\
y\left(1-e^{x}\right) & =1+e^{x} \\
y-y e^{x} & =1+e^{x} \\
y-1 & =e^{x}+y e^{x} \\
y-1 & =e^{x}(1+y) \\
e^{x} & =\frac{y-1}{y+1} \\
x & =\ln \left(\frac{y-1}{y+1}\right)
\end{aligned}
$$

Step 3) Interchange x and y. This gives us $y=f^{-1}(x)=\ln \left(\frac{x-1}{x+1}\right)$.
Let's verify that we have the correct solution by checking the cancellation equations:

$$
\left.\begin{array}{rl}
f\left(f^{-1}(x)\right) & =f\left(\ln \left(\frac{x-1}{x+1}\right)\right) \\
& =\frac{1+\exp \left(\ln \left(\frac{x-1}{x+1}\right)\right)}{1-\exp \left(\ln \left(\frac{x-1}{x+1}\right)\right)} \\
& =\frac{1+\left(\frac{x-1}{x+1}\right)}{1-\left(\frac{x-1}{x+1}\right)} \\
& =\frac{x+1+x-1}{x+1-x+1} \\
& =\frac{2 x}{2} \\
\left.f^{-1}(x)\right) & =x \\
f^{-1}(f(x)) & =f^{-1}\left(\frac{1+e^{x}}{1-e^{x}}\right) \\
& =\ln \left(\frac{1+e^{x}}{1-e^{x}}-1\right. \\
\frac{1+e^{x}}{1-e^{x}}+1
\end{array}\right)
$$

So the cancellation conditions are satisfied, and we have found the inverse function correctly.

Example Graph the given functions on a common screen. How are these graphs related?

$$
y=\log _{1.5} x, \quad y=\ln x, \quad y=\log _{10} x, \quad y=\log _{50} x
$$

The functions can be graphed using the following Mathematica commands:

```
Plot [\{Log[1.5, x], \(\log [x], \log [10, x], \log [50, x]\},\{x,-5,5\}\),
    PlotRange -> \{\{-1, 3\}, \{-3, 4\}\}]
```

I added options to get the plots to be different colours, and to have the axes labeled. The commands I used to generate the plot below was:

```
Plot \([\{\log [1.5, x], \log [x], \log [10, x], \log [50, x]\},\{x,-5,5\}\),
    PlotRange -> \{\{-1, 3\}, \{-3, 4\}\}, AxesLabel -> \{"x", "Exp[x]"\},
    PlotStyle -> \{\{RGBColor[1, 0, 0]\}, \{RGBColor[0, 1, 0]\},
            \{RGBColor [0, 0, 1]\}, \{RGBColor[1, 1, 0]\}\}]
```


In my plots, the functions are:

$$
\begin{array}{ll}
y=\log _{1.5} x & \text { red } \\
y=\ln x & \text { green } \\
y=\log _{10} x & \text { blue } \\
y=\log _{50} x & \text { yellow }
\end{array}
$$

All the plots pass through the point $(1,0)$, all increase, and all approach negative infinity as x approaches zero from the left. As the base increases, the function stays closer to zero.

Example Starting with the graph of $y=\ln x$, find the equation of the graph that results from
a) shifting 3 units upward,
b) shifting 3 units to the left,
c) reflecting about the x-axis,
d) reflecting about the y-axis,
e) reflecting about the line $y=x$,
f) reflecting about the x-axis and then about the line $y=x$,
g) reflecting about the y-axis and then about the line $y=x$.

I have plotted the graphs with the reflections below.

a) $y=\ln x+3$

d) $y=\ln (-x)$

g) $y=-e^{x}$

b) $y=\ln (x+3)$

e) $y=e^{x}$

h) $y=e^{x}-3$

c) $y=-\ln x$

f) $y=e^{-x}$

