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Calculus I Handout: Curves and Surfaces in R3

Up until now, everything we have worked with has been in two dimensions. But we can extend the concepts of calculus
to three dimensions (and beyond!). Why would we want to do this? Well, we can think of functions that depend on more
than one variable. For example, the cost of producing a pencil may depend on the price of the wood chips used in the
pencil, the cost of labour, the cost of running a factory, and many other things. There may be no relationship between
these things, and so eliminating some of the variables by finding relationships between them could be difficult (if not
impossible) to do. Sometimes, a relationship between multiple variables can be determined–for example, Ohm’s Law in
electric circuits is V = IR, where voltage V is determined in terms of the product of the the current I and resistance R
in the circuit. We express this dependence mathematically by writing V (I,R).

The study of calculus that involves functions of more than one variable is called multivariable calculus, and it is studied
in depth in Calculus III. However, we want to introduce some of the basic concepts of multivariable calculus to you now.
We will focus on three dimensions, R3. These concepts will include
• three dimensional coordinate systems,
• surfaces in R3 (explicit representation),
• traces, contour plots,
• space curves in R3 (parametric),
• partial derivatives,
• introduction to extrema in R3.

We will begin by reviewing some of the concepts we have learned in R2, and then we shall extend these concepts to R3.

1 Curves in R2

An ordered pair (x, y) is needed to locate a point in the plane. The set of all ordered pairs of real numbers is the Cartesian
product R2 = {(x, y)|x, y ∈ R}.

In Fig. 1 the two dimensional xy-coordinate system is shown. This is an orthogonal coordinate system, since the angle
between the x-axis and y-axis is π/2 radians (or 90 degrees). A point is designated by the ordered pair (x, y). The
coordinate lines x = 0 (y-axis) and y = 0 (x-axis) split R2 into four quadrants.

Figure 1: An orthogonal two dimensional coordinate system, locating a point in the system, and the four quad-
rants.
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We have seen three different ways to describe a function in R2. They are:
Explicit function: y = f(x)
Implicit function: F (x, y) = 0
Parametric function: x = f(t), y = g(t), α ≤ t ≤ β

In Fig. 2 there are plots of the three types of functions, and the Mathematica commands which generated the plots. As
we have noted before, implicit functions and parametric functions can produce wonderfully beautiful curves.

Plot[x^3 Sin[x^3], {x, 0, 4},
AxesLabel -> {"x", "y"},
AspectRatio -> 1]

ContourPlot[x^11 - y^11 + 10 x^2 y^2 == 1,
{x, -2, 2}, {y, -2, 2},
AxesLabel -> {"x", "y"},
AspectRatio -> 1,
PlotPoints -> 100]

ParametricPlot[{Cos[t] - Cos[80t] Sin[t], 2 Sin[t] - Sin[80t]},
{t, -Pi, Pi}, PlotPoints -> 400, AxesLabel -> {"x", "y"},
AspectRatio -> 1]

Figure 2: An example of plotting explicit function: y = x3 sin x3, implicit function: x11 − y11 + 10x2y2 = 1, and a
parametric function: x = cos t− cos 80t sin t, y = 2 sin t− sin 80t, −π ≤ t ≤ π using Mathematica.

What we have in all cases is that the graph of an equation (explicit, implicit or parametric) involving x and y is a curve
in R2. We now turn our attention to extending these ideas to coordinate systems of higher dimension. We shall see that
instead of only having curves, we will get curves and surfaces in R3.
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2 Coordinates, Curves and Surfaces in R3

An ordered triple (x, y, z) is needed to locate a point in three dimensional space. The set of all ordered triples of real
numbers is the Cartesian product R3 = {(x, y, z)|x, y, z ∈ R}.

In Fig. 3 the three dimensional xyz-coordinate system is shown. This is an orthogonal coordinate system, since the angle
between all the coordinate axes is π/2 radians. It is also known as a right hand coordinate system. since it satisfies the
right hand rule.

The right hand rule is as follows: With your right hand, point your fingers along the positive x-axis. Now, curl them so
that the tips of your fingers point in the direction of the positive y-axis. Extend your thumb, and it points in the direction
of the positive z axis. If your thumb points in the direction of the negative z-axis, you have a left hand coordinate system.

Figure 3: The orthogonal right handed three dimensional xyz-coordinate system. Think of the x-axis as coming
out of the page towards you. On the left is how Mathematica draws its axes by default. Notice that y is going
into the page and x is coming out of the page.

The three coordinate axes determine the three coordinate planes (Fig. 4). The coordinate planes are determined by setting
one of the coordinates to zero. Hence, the xy-plane is given by z = 0; the zy-plane is given by x = 0; and the zx-plane is
given by y = 0.

Notice in Fig. 5 that the coordinate planes divide R3 into eight octants. In two dimensions, the coordinate lines divide
R2 into four quadrants.

Problem 1. Sketch the points (3, 4, 2), (−4, 4, 4), (0,−3, 4) on coordinate axes.

Problem 2. Sketch the planes x = −3 and y = 4 on a single set of coordinate axes.

2.1 Surfaces in R3

A surface in R3 can be generated in different ways. You could imagine that we will be able to generate explicit represen-
tations of surfaces, implicit representations of surfaces, and parametric representations of surfaces.

Explicit functions are easily constructed in R3, and can easily be visualized by using the Mathematica command Plot3D.

Parametric functions are very interesting and important in multivariable calculus. There is also a Mathematica command
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xy-plane (z = 0) zy-plane (x = 0) zx-plane (y = 0)

Figure 4: The coordinate planes.

Figure 5: The coordinate planes divide R3 into eight octants.

(ParametricPlot3D) which allows one to plot a parametric function in R3.

Although you might guess that one should exist, there is no command ImplicitPlot3D in Mathematica! Typically, Plot3D
and ParametricPlot3D will allow you to plot any function you desire.

Although parametric functions are useful and interesting, we will only be considering the explicit representation of a
surface in R3. Parametric functions in R3 are studied in depth in Calculus III.

2.1.1 Explicit Representation of Surfaces in R3

In R2, a function could be explicitly represented as y = f(x). Given x, we can use f to determine y in the ordered pair
(x, y).

Extending this idea to R3, we can write z = f(x, y), and if we are given any ordered pair (x, y), we can use f to determine
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z in the ordered triple (x, y, z).

For example, consider the function z = y2 cos(xy)e−y2
. Given (x, y), we can determine the value of z which goes with

that ordered pair. We could imagine constructing a table of values, and graphing many dots over the xy-plane by hand.
Thankfully, there is an easier method. We can plot this function using the Mathematica command Plot3D. Figure 6
contains a plot of this function.

Plot3D[y^2 Cos[x*y]Exp[-y^2],
{x, -2, 2}, {y, -2, 2}, AspectRatio -> 1,
AxesLabel -> {"x", "y", "z "}, PlotPoints -> 40]

Figure 6: The surface given by the explicit function z = y2 cos(xy)e−y2
.

An important aspect of working in R3 is being able to sketch and describe surfaces. Does the surface look like a sphere?
A cone (straight sides)? A paraboloid (curved sides)? Does the surface open up, down, or does it open along an axis other
than the z-axis? What do I mean by all these questions?

Notice that the surface in Fig 6 is drawn with grid lines. One set of grid lines have a fixed y value and are contained in a
plane parallel to the xz-plane (cf. Fig. 4). The other grid lines have a fixed x value, and are contained in a plane parallel
to the yz-plane.

By examining these grid lines in more detail, we can answer the questions posed above.

2.2 Traces of Surfaces

A trace of a surface is just a fancy way of saying a cross section. If we think of a cross section as a slice through
something–an idea all the biologists will be familiar with–then we already understand what the concept of trace means
mathematically, for these are essentially the same concept.
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Consider our previous example, z = y2 cos(xy)e−y2
. First, let’s take cross sections that have a fixed value of x. We show

this graphically in Fig. 7.

Figure 7: The surface given by the explicit function z = y2 cos(xy)e−y2
, and how the trace in the yz-plane is

constructed via cross sections. On the right, the viewpoint has been changed so we are looking at the curve
from the end on, so we see essentially the cross section that results when the plane at x = 2 is used to slice the
surface.

What we need to be able to do is figure out analytically what the traces are. If x = k, where k is a constant, we get the
function in R2

z = y2 cos(ky)e−y2
,

which means we have a function in the zy-plane governed by a parabola, cosine and decaying exponential. By varying the
constant k we will get different curves–so the trace is really a family of curves.

Second, let’s take cross sections that have a fixed value of y. We show this graphically in Fig. 8.

Figure 8: The surface given by the explicit function z = y2 cos(xy)e−y2
, and how the trace in the xz-plane is

constructed via cross sections. On the right, the viewpoint has been changed so we are looking at the curve
from the end on, so we see essentially the cross section that results when the plane at y = −2 is used to slice
the surface.
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If y = k, where k is a constant, we get the function in R2

z = k2 cos(xk)e−k2
,

which means we have a cosine function in the zx-plane. By varying the constant k we will get a family of curves.

There is a third trace, one in the xy-plane, and it is usually called a contour plot. We will learn about contour plots
shortly. Another way of thinking of the trace is as a projection of the surface onto the coordinate planes.

How to calculate the trace of z = f(x, y)

If you want the trace in the zx-plane, you will set y = k and the trace is given by the family of curves z = f(x, k).

If you want the trace in the zy-plane, you will set x = k and the trace is given by the family of curves z = f(k, y).

For the previous example, we can more easily plot the traces by simply plotting the family of curves. This is done in
Fig. 9.

list = Table[k^2 Cos[x*k]Exp[-k^2],
{k, -2, 2, 1/2}]

Plot[Evaluate[list], {x, 0, 5 Pi}]

list = Table[y^2 Cos[k*y]Exp[-y^2],
{k, -4, 4}]

Plot[Evaluate[list], {y, -2, 2}]

Figure 9: The traces in the zx-plane (left) and the zy-plane (right) for the surface z = y2 cos(xy)e−y2
.

Example 1. Sketch and describe the traces in the zx-plane and the zy-plane for the surface z = x2 − y2.

Solution The trace in the zx-plane is given by the family of curves z = x2 − k2.

The trace in the zy-plane is given by the family of curves z = k2 − y2.

Sketches of these traces are given in Fig. 10. In the zx-plane we have a family of curves which are parabolas that open
up, and in the zy-plane we have a family of curves which are parabolas which open down.

2.3 Contour Plots of Surfaces

A contour plot of a surface is similar to a trace, in that it represents intersections of the surface with planes. For a contour
plot, the planes of intersection are parallel to the xy-coordinate plane.
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list = Table[k^2 - y^2, {k, -10, 10}]
Plot[Evaluate[list], {y, -6, 6}]

list = Table[x^2 - k^2, {k, -10, 10}]
Plot[Evaluate[list], {x, -6, 6}]

Figure 10: The traces in the zx-plane (right) and the zy-plane (left) for the surface z = x2 − y2.

Plot3D[x^2 - y^2, {x, -6, 6}, {y, -6, 6}]

Figure 11: The surface z = x2 − y2.

The traces help us sketch the function, but the contour plots help us determine extrema for the function, and also give us
another way of representing the function without resorting to a three dimensional sketch.

Figure 14 shows how planes intersecting the surface create lines with constant z values.

Contour plots are important since the lines in a contour plot join points on the surface with the same height. When you
move to a different line, you move to either a larger or smaller value of the function z = f(x, y).

Since contour plots are so important, Mathematica has a special command to generate them for a function. Figure 13
shows the contour plot for the function z = y2 cos(xy)e−y2

. The regions with higher z values are lighter.
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Figure 12: The surface given by the explicit function z = y2 cos(xy)e−y2
, and how the trace in the xy-plane (or

contour plot) is constructed via cross sections. On the right, the viewpoint has been changed so we are looking
at the curve from the top on, so we see essentially the cross section that results when the plane at z = 0.25 is
used to slice the surface.

ContourPlot[y^2 Cos[x*y]Exp[-y^2],
{x, -2, 2}, {y, -2, 2},
PlotPoints -> 40,
FrameLabel -> {"x", "y"}]

ContourPlot[y^2 Cos[x*y]Exp[-y^2],
{x, -2, 2}, {y, -2, 2},
PlotPoints -> 40,
FrameLabel -> {"x", "y"},
ContourShading -> False]

Figure 13: The contour plot for z = y2 cos(xy)e−y2
, with and without shading.
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Problem 3. Sketch and describe the traces in the zx-plane and the zy-plane for the surface z = 1− x2 − y2. Also create
a contour plot of the function.

Problem 4. Sketch and describe the traces in the zx-plane and the zy-plane for the surface x2 +4y2 + z2 = 1. (For these
traces you will want to use ImplicitPlot).

Problem 5. Sketch and describe the traces in the zx-plane and the zy-plane for the surface z = cos(xy)e(−x2−y2)/10.
Also generate a contour plot.

2.4 Space Curves in R3

The way to generate a curve in R3 (typically called a space curve) is to use a parametric representation of the curve. A
space curve in R3 can be represented by

x = f(t), y = g(t), z = h(t), α ≤ t ≤ β.

As we vary t, we will sweep out the curve that passes through the points (f(t), g(t), h(t)). Notice how this is a simple
extension of the concept of a parametric function in R2.

For example, consider the curve

x = cos t, y = sin t, z = t, 0 ≤ t ≤ 5π.

This space curve is a helix, and it is plotted in Fig. 14.

ParametricPlot3D[{Cos[t], Sin[t], t}, {t, 0, 5Pi},
AspectRatio -> 1,
AxesLabel -> {"x", "y", "z"}]

Figure 14: The space curve x = cos t, y = sin t, z = t, 0 ≤ t ≤ 5π.

Another example of a space curve is

x = cos t, y = sin t, z = sin 5t, 0 ≤ t ≤ 2π.
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ParametricPlot3D[{Cos[t], Sin[t], Sin[5t]}, {t, 0, 2Pi},
AspectRatio -> 1,
AxesLabel -> {"x", "y", "z"}]

Figure 15: The space curve x = cos t, y = sin t, z = sin 5t, 0 ≤ t ≤ 2π.

Problem 6. This problem is a Mathematica investigation problem.

Investigate the space curves

x = cos t, y = sin t, z = sin at, 0 ≤ t ≤ 2π,

for a = 0, 1, 2, 3, ..., 20. What do you notice about the curve as a changes? What do you notice about how Mathematica
draws the curve as a gets large? Can you think of a reason why the things you see happen? Can you think of a way to
improve the sketch for large a?

Space curves are very difficult to draw by hand. We almost always have to resort to using a computer. But even then we
have to keep our wits about us.

3 Partial Differentiation

Once we have the idea of a surface in R3, we can think of derivatives of the function. This is where the Leibniz notation
of derivative really begins to help us, and the “prime” notation is essentially discarded.

In Fig. 16 we have a surface in R3 that represents the function z = f(x, y) = ye−x2−y2
.

This graphical representation contains a grid on the surface consisting of paths in the x direction and the y direction.
These paths are, respectively, the traces in the zy-plane and the zx-plane.

If we are moving along a path in the x-direction (trace in the zy-plane), then we are holding y fixed at a value that picks
out the path we are on. For example, if we look at the path in the x direction that is represented by f(x,−1), we get a
path which is shown in Fig. 16.
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Plot3D[f[x, y], {x, -2, 2},
{y, -2, 2}]

ContourPlot[f[x, y],
{x, -4, 4}, {y, -2, 2}]

Plot[f[x, -1], {x, -4, 4}] Plot[f[1/2, y], {x, -4, 4}]

Figure 16: Top Left: The surface z = f(x, y) = ye−x2−y2
. Top Right: contour plot. Bottom Left: The path

z = f(x,−1) = −e−x2−1 in the x direction. Bottom Right: The path z = f(1/2, y) = ye−y2−1/4 in the y direction.

We could certainly take the derivative of the function z = f(x,−1) with respect to x using the techniques from single
variable calculus. We could do the same thing for a path in the y direction, and then find the derivative with respect to
y. This leads us to the concept of partial derivative.

There is a new notation for derivative in multivariable calculus, which represents the fact that one of the variables is held
constant during the derivative process. We define the partial derivatives of the function z = f(x, y) to be

∂f

∂x
(x, y) = lim

h→0

f(x + h, y)− f(x, y)
h

, and
∂f

∂y
(x, y) = lim

h→0

f(x, y + h)− f(x, y)
h

.

Note that since our function f was a function of two variables, we have two first partial derivatives.

To find the partial derivative
∂f

∂x
(x, y) we treat y as a constant and differentiate with respect to x, using all our usual

derivative rules (product rule, quotient rule, chain rule, etc.). Similarly, we find
∂f

∂y
(x, y) by treating x as a constant and

differentiating with respect to y.

The new symbol ∂ reminds us that we are holding one of the variables fixed while we take the derivative.

Warning: This is different from implicit differentiation of an implicit function F (x, y) = 0 where we would think of y as
a function of x. Although z = f(x, y) and F (x, y) = 0 may look similar, they represent two completely different things;
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z = f(x, y) is a surface in R3, but F (x, y) = 0 is an implicit function in R2.

We can also take higher order partial derivatives. There will be four possible second order partial derivatives:

∂2f

∂x∂x
(x, y) =

∂2f

∂x2
(x, y),

∂2f

∂y∂y
(x, y) =

∂2f

∂y2
(x, y),

∂2f

∂x∂y
(x, y),

∂2f

∂y∂x
(x, y).

We get the higher order derivatives like we did for single variable functions, by first calculating the first order derivatives
and then differentiating these new functions.

Example Find the derivatives
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂y2
,

∂2f

∂x∂y
,

∂2f

∂y∂x
given f(x, y) = x3y − y2x

Solution

f(x, y) = x3y − y2x

∂f

∂x
(x, y) =

∂

∂x
[x3y − y2x]

= 3x2y − y2

∂f

∂y
(x, y) =

∂

∂y
[x3y − y2x]

= x3 − 2yx

∂2f

∂x2
(x, y) =

∂

∂x
[3x2y − y2]

= 6xy

∂2f

∂y2
(x, y) =

∂

∂y
[x3 − 2yx]

= −2x
∂f

∂y∂x
(x, y) =

∂

∂y
[3x2y − y2]

= 3x2 − 2y

∂f

∂x∂y
(x, y) =

∂

∂x
[x3 − 2yx]

= 3x2 − 2y

Notice that we have
∂f

∂x∂y
(x, y) =

∂f

∂y∂x
(x, y). This equality of the mixed second partial derivative will be true as long

as the functions are all continuous (we haven’t talked about continuity for a function in R3, but basically if the function
has no sudden jumps it is continuous).

You can perform partial derivatives in Mathematica using the command D. This provides you an excellent method of
checking your derivatives:

f[x_, y_] = x^3 y - y^2 x
D[f[x, y], x]
D[f[x, y], y]
D[f[x, y], x, x]
D[f[x, y], y, y]
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D[f[x, y], x, y]
D[f[x, y], y, x]

Problems 7–10 Find the derivatives
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂y2
,

∂2f

∂x∂y
,

∂2f

∂y∂x
given f(x, y). You can check your answer using

Mathematica.

Problem 7. f(x, y) = xy.

Problem 8. f(x, y) = cos(xy).

Problem 9. f(x, y) =
√

x2 + y2.

Problem 10. f(x, y) = tan(y/x).

4 Extrema in R3

Let’s look at the function z = f(x, y) = −x2 − y2 + x− 4y + 12. It is sketched in Fig 17.

f[x_, y_] = -x^2 - y^2 + x - 4y + 12
Plot3D[f[x, y], {x, -6, 6}, {y, -6, 6}, AspectRatio -> 1,
AxesLabel -> {"x", "y", "z "}, PlotPoints -> 20]

Figure 17: The surface z = f(x, y) = −x2 − y2 + x− 4y + 12.

The surface definitely has a local maximum. A local maximum at (x0, y0) means if we move away from the point (x0, y0)
slightly (in any direction!) the function would be less than the value at (x0, y0).

For this reason, finding a maximum in R3 is often called hill climbing. If you start from any point on the surface, hill
climbing will lead you to a local maximum (but with no guarantee that you found is a global maximum). Mathematically,
you are always moving in the direction where the partial derivatives are increasing most rapdily until you arrive a point
where the partial derivatives are both zero.
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Therefore, at a local extrema, the first partial derivatives must be zero. This is similar to what we say in R2: the tangent
line must be horizontal, i.e., the derivative equals zero.

What we must do is solve the two equations

∂f

∂x
= 0,

∂f

∂y
= 0

simultaneously for (x, y).

f(x, y) = −x2 − y2 + x− 4y + 12
∂f

∂x
(x, y) =

∂

∂x
[−x2 − y2 + x− 4y + 12]

= −2x + 1
∂f

∂y
(x, y) =

∂

∂y
[−x2 − y2 + x− 4y + 12]

= −2y − 4

−2x + 1 = 0
−2y − 4 = 0

The solution was easy in this case, and we find (x, y) = (−1/2,−2) is the point where the maximum occurs, and the
maximum is f(−1/2,−2) = 61/4.

There are tests equivalent to the second derivative test to verify that what you have found is a maximum or a minimum,
however, those tests are a bit too involved for us at this time. We will focus instead on getting a sketch (using either
Plot3D or ContourPlot) to determine if we have a max or min, and then determining the point (x, y) for which the
extrema occurs.

Example Find and classify any local extrema for the function z = f(x, y) = x4 + y4 − 4xy − 2y − 4x + 12.

Solution First, we can plot the function. I am going to use two viewpoints, Although the default viewpoint does indicate
that we have a minimum, I feel the second viewpoint shows it better. I’ve also included a contour plot, which definitely
indicates a minimum near the origin. All sketches are in Fig. 18.

Now we know we are looking for a minimum. We can find the point where the minimum occurs with the help of
Mathematica:

eq1 = D[f[x, y], x] == 0
eq2 = D[f[x, y], y] == 0
NSolve[{eq1, eq2}, {x, y}]

The only real valued point here is (x, y) = (1.304, 1.217), and this point seems reasonable based on our sketch. Therefore,
the function has a local minimum at (x, y) = (1.304, 1.217) of f(1.304, 1.217) = 3.087

Problem 11. Find the value of (x, y) for which the function z = f(x, y) = e4y−y2−x2
has a local extrema. Is the extrema

a max or a min? Clearly indicate the equations you are solving to find the extrema.

Problem 12. Find the value of (x, y) for which the function z = −
√

36− x2 − y2 + x + 2y has a local extrema. Is the
extrema a max or a min? Clearly indicate the equations you are solving to find the extrema.
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Plot3D[f[x, y], {x,-4,4},
{y,-4,4}]

Plot3D[f[x, y], {x,-4,4},
{y,-4,4},
ViewPoint -> {10, -5, 0.1}]

ContourPlot[f[x, y], {x,-4,4},
{y,-4,4}]

Figure 18: The surface z = f(x, y) = x4 + y4 − 4xy − 2y − 4x + 12.

5 Final Thoughts

There are a great many extensions of the concepts from single variable calculus to multivariable calculus. If a single integral
represents area under a curve, we can imagine that a double integral would represent volume. There are extensions of
the Closed Interval Method for finding extrema and The Second Derivative Test for classifying extrema. There are
tangent planes rather than tangent lines. And there are other concepts as well, things like vectors, divergence, gradient,
surface integrals, line integrals, directional derivatives, and Lagrange multipliers. Multivariable calculus has a direct and
significant relationship with Maxwell’s laws from physics which are used to model electromagnetism.

The study of multivariable calculus is a wonderful and thrilling experience. We have only touched on a few concepts from
multivariable calculus here, as a brief introduction. Also, we have used Mathematica more extensively than at any other
time in the course!

The concepts we focused on were
• R3, and a three dimensional coordinate system,
• explicit representation of surfaces in R3, z = f(x, y),
• traces in zx-plane and zy-plane (traces are families of curves),
• contour plots in xy-plane (lines in a contour plot connect points with same z value),
• parametric representations of space curves in R3,
• partial derivatives of explicit functions z = f(x, y),
• short introduction to extrema in R3.
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6 Solutions

Problem 1.

Problem 2.

Problem 3. The trace in the zx-plane is given by the family of curves

z = 1− x2 − k2.

The trace in the zy-plane is given by the family of curves

z = 1− k2 − y2.

Sketches of these traces are given in Fig. 19. In the zy-plane we have a family of curves which are parabolas opening
down, and in the zx-plane we have a family of curves which are also parabolas opening down. The contour plot shows
circles, and since the middle is lighter we expect to find a maximum around the origin.
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f[x_, y_] = 1 - x^2 - y^2
list = Table[f[k, y],

{k, -10, 10}]
Plot[Evaluate[list],

{y, -6, 6}]

f[x_, y_] = 1 - x^2 - y^2
list = Table[f[x, k],

{k, -10, 10}]
Plot[Evaluate[list],

{x, -6, 6}]

f[x_, y_] = 1 - x^2 - y^2
ContourPlot[f[x, y],
{x, -6, 6}, {y, -6, 6}]

Figure 19: The traces in the zx-plane (center) and the zy-plane (left) and the contour plot (right) for the
surface z = 1− x2 − y2.

Problem 4. The trace in the zx-plane is given by the family of curves

x2 + k2 + z2 = 1.

The trace in the zy-plane is given by the family of curves

k2 + y2 + z2 = 1.

Sketches of these traces are given in Fig. 20. In the zy-plane we have a family of curves which are circles, and in the
zx-plane we have a family of curves which are ellipses.

Problem 5. The trace in the zx-plane is given by the family of curves

z = cos(xk)e(−x2−k2)/10.

The trace in the zy-plane is given by the family of curves

z = cos(ky)e(−k2−y2)/10.

Sketches of these traces are given in Fig. 21. In the zy-plane we have a family of curves which oscillate, and also decay;
and in the zx-plane we have a family of curves which also oscillates and decays.
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f[x_, y_, z_] = 1 - x^2 - 4y^2 - z^2
list = Table[f[k,y,z]==0,{k,0,2,0.2}]
ImplicitPlot[Evaluate[list],
{y,-2,2},{z,-2,2},
PlotPoints -> 40]

list = Table[f[x, k, z] == 0, {k, 0, 2, 0.2}]
ImplicitPlot[Evaluate[list], {x, -2, 2},
{z, -2, 2},
PlotPoints -> 40]

Figure 20: The traces in the zx-plane (right) and the zy-plane (left) for the surface x2 + 4y2 + z2 = 1.

f[x_, y_] =
Cos[y x]*Exp[(-y^2-x^2)/10]

list = Table[f[k, y],
{k, -2, 2}]

Plot[Evaluate[list],
{y, -4, 4}]

f[x_, y_] =
Cos[y x]*Exp[(-y^2-x^2)/10]

list = Table[f[x, k],
{k, -2, 2}]

Plot[Evaluate[list],
{x, -4, 4}]

f[x_, y_] =
Cos[y x]*Exp[(-y^2-x^2)/10]

ContourPlot[f[x, y],
{x, -6, 6}, {y, -6, 6}]

Figure 21: The traces in the zx-plane (center) and the zy-plane (left) and the contour plot (right) for the

surface z = cos(xy)e(−x2−y2)/10.
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Problem 6. The function is sketched for a = 3 and a = 20 in Fig. 22. The function has “peaks”, and it seems like it
will have a peaks. Also, the function is cyclic in that it looks like it will repeat if we take a larger set of t. Finally, for a
large the function gets “choppy” when Mathematica plots it. This is because the number of points that Mathematica is
sampling at is too small to reproduce the structure of the function accurately. The space curve can be made smoother by
increasing the number of plot points used.

a = 3
ParametricPlot3D[
{Cos[t], Sin[t], Sin[a t]},
{t, 0, 2Pi}, AspectRatio -> 1,
AxesLabel -> {"x", "y", "z"}]

a = 3
ParametricPlot3D[
{Cos[t], Sin[t], Sin[a t]},
{t, 0, 2Pi}, AspectRatio -> 1,
AxesLabel -> {"x", "y", "z"},
PlotPoints -> 1000]

Figure 22: The space curves x = cos t, y = sin t, z = sin at, 0 ≤ t ≤ 2π, with a = 3 and a = 20.

Problem 11. First, we can plot the function. The sketch can be seen in Fig. 23. Now we know we are looking for a

f[x_, y_] = Exp[4y - x^2 - y^2]
Plot3D[f[x, y], {x,-2,2}, {y,0,4}, AspectRatio->1,

AxesLabel -> {"x","y","z"}]

Figure 23: The surface z = f(x, y) = e4y−x2−y2
.

maximum. We can find the point where the maximum occurs with the help of Mathematica:

eq1 = D[f[x, y], x] == 0
eq2 = D[f[x, y], y] == 0
NSolve[{eq1, eq2}, {x, y}]
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We could also do this by hand to find

∂f

∂x
= e4y−x2−y2

(−2x) = 0

∂f

∂y
= e4y−x2−y2

(4− 2y) = 0

The only solution to these equations is (x, y) = (0, 2), and this point seems reasonable based on our sketch. Therefore,
the function has a local minimum at (x, y) = (0, 2) of f(0, 2) = e4.

Problem 12.

First, we can plot the function. The sketch can be seen in Fig. 24.

f[x_, y_] = -Sqrt[36 - x^2 - y^2 + x + 2y]
Plot3D[f[x, y], {x,-4,4}, {y,-4,4}]

Figure 24: The surface z = f(x, y) = −
p

36− x2 − y2 + x + 2y.

Now we know we are looking for a minimum. We can find the point where the minimum occurs by calculating partial
derivatives

∂f

∂x
= − 1− 2x

2
√

36− x2 − y2 + x + 2y
= 0

∂f

∂y
= − 2− 2y

2
√

36− x2 − y2 + x + 2y
= 0

or

1− 2x = 0, 2− 2y = 0.

The only solution to these equations is (x, y) = (1/2, 1), and this point seems reasonable based on our sketch. Therefore,
the function has a local minimum at (x, y) = (1/2, 1) of f(1/2, 1) = −

√
149/2.
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