Try to do these without a calculator. Remember you can check your answers by multiplying out.

Common factors in terms

Usually you want the greatest common factor so you can work with smaller numbers:

$$
48 x^{2}+96 x+36=12\left(4 x^{2}+8 x+3\right)
$$

Factoring by Grouping

This is sort of like using the distribution property in the other direction:

$$
\begin{array}{ll}
(3 y-8)(2 x-7)=3 y(2 x-7)-8(2 x-7) & \text { (distribution property) } \\
3 y(2 x-7)-8(2 x-7)=(3 y-8)(2 x-7) & \text { (factoring by grouping) }
\end{array}
$$

Factoring trinomials of form $x^{2}+b x+c$

$$
x^{2}+b x+c=(x+m)(x+n) \text { where } m \text { and } n \text { are two numbers whose product is } c \text { and sum is } b \text {. }
$$

Factoring trinomials of form $a x^{2}+b x+c$
The Grouping Method to factor trinomials of form $a x^{2}+b x+c$:

1. Determine the grouping number $a c$.
2. Find two numbers whose product is $a c$ and sum is b.
3. Use these numbers to write $b x$ as the sum of two terms.
4. Factor by grouping.

5 . Check your answer by multiplying out.

Difference of Squares

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Perfect Square (sum and difference)

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

Sum of Cubes, and Difference of Cubes

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

Remember that for the cubes, you will not be able to factor the resulting quadratic using the techniques of this unit.

Questions

1. Factor $9 x^{2}+9 x+2$.
2. Factor $4 x^{2}+11 x+6$.
3. Factor $15 x^{2}-34 x+15$.
4. Factor $3 a^{2}-10 a-8$.

Note: My solutions to 1-4 contain both trial and error and grouping method (which is why they are so long-you don't need to do both).
5. Factor $12 x^{2}-2 x-18 x^{3}$.
6. Factor $4 x^{2}-28 x-72$.
7. Factor $7 x^{2}+3 x-2$.
8. Factor $14 x^{2}-x^{3}+32 x$.
9. Factor $30 x^{3}-25 x^{2} y-30 x y^{2}$.
10. Factor $27 x^{4}-64 x$.

My solutions for 5-10 are brief, the minimum you would need to show to get the correct answer. I will leave it to your to check your answers by multiplying out.

Solutions

1. Factor $9 x^{2}+9 x+2$.

Since the coefficient of x^{2} is not 1 , and there are no common factors we try trial and error or the grouping method.
Trial and Error
Factors of 9: 9 and 1 3 and 3
Factors of 2: 1 and 2

Possible Factors	Middle Term	Correct?
$(9 x+1)(x+2)$	$19 x$	No
$(9 x+2)(x+1)$	$11 x$	No
$(3 x+1)(3 x+2)$	$9 x$	Yes

Check: $(3 x+1)(3 x+2)=9 x^{2}+3 x+6 x+2=9 x^{2}+9 x+2$.
Grouping Method
$9 x^{2}+9 x+2$ has grouping number $9 \times 2=18$.
Find two numbers whose product is 18 and whose sum is 9: 3 and 6 .
Now write the $9 x$ term as two terms based on the numbers you found.

$$
9 x^{2}+9 x+2=9 x^{2}+3 x+6 x+2
$$

(red terms have a factor of $3 x$)
(blue terms have a factor of 2)
$=3 x(3 x+1)+2(3 x+1)$
(both terms have a factor of $3 x+1$)

$$
=(3 x+2)(3 x+1)
$$

Check: $(3 x+1)(3 x+2)=9 x^{2}+3 x+6 x+2=9 x^{2}+9 x+2$.

You might also have written the following, which is entirely correct.

$$
9 x^{2}+9 x+2=9 x^{2}+6 x+3 x+2
$$

(red terms have a factor of $3 x$)
(blue terms have no factor (it appears))
$=3 x(3 x+2)+(3 x+2)$
$=3 x(3 x+2)+1(3 x+2)$ (those blue terms actually have a factor of 1 , so put it in)
(both terms have a factor of $3 x+2$)
$=(3 x+1)(3 x+2)$
2. Factor $4 x^{2}+11 x+6$.

Since the coefficient of x^{2} is not 1 , and there are no common factors we try trial and error or the grouping method.
Trial and Error

Factors of 4:	4 and 1
2 and 2	
Factors of 6:	1 and 6
2 and 3	

Possible Factors	Middle Term	Correct?
$(4 x+1)(x+6)$	$25 x$	No
$(4 x+2)(x+3)$	$14 x$	No
$(2 x+1)(2 x+6)$	$14 x$	No
$(2 x+2)(2 x+3)$	$10 x$	No
$(4 x+6)(x+1)$	$20 x$	No
$(4 x+3)(x+2)$	$11 x$	Yes

Check: $(4 x+3)(x+2)=4 x^{2}+3 x+8 x+6=4 x^{2}+11 x+6$.
Grouping Method
$4 x^{2}+11 x+6$ has grouping number $4 \times 6=24$.
Find two numbers whose product is 24 and whose sum is $11: 3$ and 8 .
Now write the $11 x$ term as two terms based on the numbers you found.

$$
4 x^{2}+11 x+6=4 x^{2}+3 x+8 x+6
$$

(red terms have a factor of x)
(blue terms have a factor of 2)
$=x(4 x+3)+2(4 x+3)$
(both terms have a factor of $4 x+3$)
$=(x+2)(4 x+3)$
Check: $(4 x+3)(x+2)=4 x^{2}+3 x+8 x+6=4 x^{2}+11 x+6$.
3. Factor $15 x^{2}-34 x+15$.

Since the coefficient of x^{2} is not 1 , and there are no common factors we try trial and error or the grouping method.
Trial and Error
Factors of 15: $\begin{aligned} & 15 \text { and } 1 \\ & 3 \text { and } 5\end{aligned}$ Signs must be negative since the middle term is negative $-34 x$.

Possible Factors	Middle Term	Correct?
$(15 x-15)(1 x-1)$	$-30 x$	No
$(15 x-3)(1 x-5)$	$-78 x$	No
$(3 x-15)(5 x-1)$	$-78 x$	No
$(3 x-3)(5 x-5)$	$-30 x$	No
$(15 x-1)(1 x-15)$	$-226 x$	No
$(15 x-5)(1 x-3)$	$-50 x$	No
$(3 x-1)(5 x-15)$	$-50 x$	No
$(3 x-5)(5 x-3)$	$-34 x$	Yes (finally!)

Check: $(3 x-5)(5 x-3)=15 x^{2}-25 x-9 x+15=15 x^{2}-34 x+15$.
Grouping Method
$15 x^{2}-34 x+15$ has grouping number $15 \times 15=225$.
Find two numbers whose product is 225 and whose sum is -34 : -9 and -25 .
Hint: Look for numbers "in the middle" rather than on the edges (this would help in the trial and error as well). What I mean is, don't start with $-1 \times(-225)$ since that does equal 225 , but obviously won't have a sum of -34 . This will just speed things up, you can always examine all the factors of 225 .
Now write the $-34 x$ term as two terms based on the numbers you found.

$$
\begin{aligned}
15 x^{2}-34 x+15 & =15 x^{2}-9 x-25 x+15 \\
& (\text { red terms have a factor of } 3 x) \\
& (\text { blue terms have a factor of } 5) \\
& =3 x(5 x-3)+5(-5 x+3) \\
& =3 x(5 x-3)-5(5 x-3) \text { (factor a }-1 \text { out of second term to get common factor in each term) } \\
& (\text { both terms have a factor of } 5 x-3) \\
& =(3 x-5)(5 x-3)
\end{aligned}
$$

Check: $(3 x-5)(5 x-3)=15 x^{2}-25 x-9 x+15=15 x^{2}-34 x+15$.
4. Factor $3 a^{2}-10 a-8$.

Since the coefficient of a^{2} is not 1 , and there are no common factors we try trial and error or the grouping method.

Trial and Error

Factors of 3: 3 and 1
Factors of 8: 2 and 4 Signs must be opposite since the last term is negative (-8).
1 and 8

Possible Factors	Middle Term	Correct?
$(3 a-2)(1 a+4)$	$+10 x$	No, but only out by sign, so switch them
$(3 a+2)(1 a-4)$	$-10 x$	Yes

Check: $(3 a+2)(a-4)=3 a^{2}-12 a+2 s-8=3 a^{2}-10 a-8$.
Grouping Method
$3 a^{2}-10 a-8$ has grouping number $3 \times(-8)=-24$.
Find two numbers whose product is -24 and whose sum is -10 : -12 and 2 .

Now write the $-10 a$ term as two terms based on the numbers you found.

$$
\begin{aligned}
3 a^{2}-10 a-8 & =3 a^{2}-12 a+2 a-8 \\
& (\text { red terms have a factor of } 3 a) \\
& \text { (blue terms have a factor of } 2) \\
& =3 a(a-4)+2(a-4) \\
& (\text { both terms have a factor of } a-4) \\
& =(3 a+2)(a-4)
\end{aligned}
$$

Check: $(3 a+2)(a-4)=3 a^{2}-12 a+2 s-8=3 a^{2}-10 a-8$.
5.

$$
\begin{aligned}
12 x^{2}-2 x-18 x^{3} & =2 x\left(6 x-1-9 x^{2}\right) \text { Factor } 2 x \\
& =-2 x\left(9 x^{2}-6 x+1\right) \text { Reorder and factor }-1 \\
& =-2 x(3 x-1)^{2} \text { Perfect square (difference), } 3 x \text { and } 1
\end{aligned}
$$

6.

$$
\begin{aligned}
4 x^{2}-28 x-72 & =4\left(x^{2}-7 x-18\right) \text { Factor } 4 . \text { Need two numbers: sum is }-7, \text { product is }-18:-9,2 \\
& =-2 x(x-9)(x-2)
\end{aligned}
$$

7. $7 x^{2}+3 x-2$ is a prime polynomial. You cannot find two integers whose sum is 3 and product is -14 . However, this can be factored using the quadratic formula.

The solution to $7 x^{2}+3 x-2=0$ is

$$
\begin{aligned}
x & =\frac{-3 \pm \sqrt{(3)^{2}-4(7)(-2)}}{2(7)} \\
& =\frac{-3 \pm \sqrt{65}}{14}
\end{aligned}
$$

We can use this to factor the original quadratic using the following logic.
If a quadratic has two roots, r_{1} and r_{2}, then the quadratic must have factors $\left(x-r_{1}\right)$ and $\left(x-r_{2}\right)$.
If the quadratic has leading coefficient a, then the quadratic can be written as $a\left(x-r_{1}\right)\left(x-r_{2}\right)$.
In this case, we therefore have

$$
7 x^{2}+3 x-2=7\left(x-\frac{-3+\sqrt{65}}{14}\right)\left(x-\frac{-3-\sqrt{65}}{14}\right)
$$

Factoring using the quadratic formula will be useful later on.
8.

$$
\begin{aligned}
14 x^{2}-x^{3}+32 x & =-x\left(-14 x+x^{2}-32\right) \text { Factor } x . \\
& =-x\left(x^{2}-14 x-32\right) \text { Reorder. Need two numbers: sum is }-14, \text { product is }-32:-16,2 \\
& =-x(x-16)(x+2)
\end{aligned}
$$

9.

$$
\begin{aligned}
30 x^{3}-25 x^{2} y-30 x y^{2} & =5 x\left(6 x^{2}-5 x y-6 y^{2}\right) \text { Factor } 5 x . \text { Grouping Method is next, let } y \text { follow along with constant. } \\
& =5 x\left(6 x^{2}-5 x y-6 y^{2}\right) \text { Need two numbers: sum is }-5 y, \text { product is }-36 y^{2}:-9 y, 4 y \\
& =5 x\left[\underline{6 x^{2}-9 y x+4 y x-6 y^{2}}\right] \text { find greatest common factor in first two terms and last two terms. } \\
& =5 x[3 x(2 x-3 y)+2 y(2 x-3 y)] \\
& =5 x[(3 x+2 y)(2 x-3 y)]=5 x(3 x+2 y)(2 x-3 y)
\end{aligned}
$$

10.

$$
\begin{aligned}
27 x^{5}-64 x^{2} & =x^{2}\left(27 x^{3}-64\right) \text { Factor } x^{2} . \text { Difference of cubes with }(3 x)^{3}=27 x^{3} \text { and } 4^{3}=64 . \\
& =x^{2}(3 x-4)\left((3 x)^{2}+(3 x)(4)+4^{2}\right) \\
& =x^{2}(3 x-4)\left(9 x^{2}+12 x+16\right)
\end{aligned}
$$

