

Example We are interested in finding the minimum cost Hamiltonian circuit for the following complete graph.

Since this is a complete graph with 5 vertices, it has (5-1)!/2 = 12 different Hamiltonian circuits.

Brute Force

Here are the results of the brute force method to find the minimum-cost Hamiltonian circuit:

Hamiltonian Circuit	Cost (Distance Travelled)	A
ABCDEA	28	
ABCEDA	33	
ABDCEA	38	9
ABDECA	33	
ABEDCA	27	13 2
ABECDA	37	
ACBDEA	30	6 12
ACBEDA	29	4
ACEBDA	39	
ACDBEA	34	7/
ADBCEA	40	
ADCBEA	34	I
		E

Å

The minimum cost Hamiltonian circuit (shown above) is ABEDCA with cost of 27.