Useful Information

When an object is thrown straight upwards, its height S in meters is approximated by the quadratic equation

$$
S=-5 t^{2}+v t+h
$$

where
$v=$ initial upward velocity of the object in m / s,
$h=$ height above ground from which the object is thrown in meters,
$t=$ time in seconds.

1. Factor: $25 x^{2}+30 x+9$.
2. Factor: $25 a^{2}-81 b^{2}$.
3. Factor: $12 x^{2}-30 x+12$.
4. Factor: $\frac{1}{8} x^{3}-27$.
5. Solve for x : $(x-5)(x+2)=-4(x+1)$.
6. Solve for x : $4 x^{2}-3 x+1=-7 x$.
7. Solve for x : $\frac{10 x^{2}-25 x}{12}=5$.
8. Solve for x : $2 x^{2}-7 x+6=0$.
9. Jules is standing on a platform 6 meters high and throws a ball straight up as high as he can at a velocity of 13 meters per second. At what time t will the ball hit the ground? Assume the ball is 6 meters from the ground when it leaves Jules hand.
10. The area of a rectangle is $6 \mathrm{ft}^{2}$. The length is 10 ft longer than 4 times the width. Determine the dimensions of the rectangle.

Solutions

1. $(5 x+3)^{2}$
2. $(5 a+9 b)(5 a-9 b)$
3. $(6(2 x-1)(x-2)$
4. $\left(\frac{x}{2}-3\right)\left(\frac{x^{2}}{4}+\frac{3 x}{2}+9\right)$ or $\frac{1}{8}(x-6)\left(x^{2}+6 x+36\right)$
5. $x=2, x=-3$
6. $x=-\frac{1}{2}$
7. $x=-\frac{3}{2}, x=4$
8. $x=\frac{3}{2}, x=2$
9. 3 seconds.
10. $1 / 2 \mathrm{ft}$ by 12 ft .
