This is about using the mathematical concept of change of variables (sometimes called substitution) which is a powerful concept and will be useful in the future. All solutions should begin by clearly identifying the change of variables that converts the equation into a quadratic equation.

Questions

1. Solve $x^{4}-11 x^{2}+18=0$.
2. Solve $3 x^{4}=10 x^{2}+8$.
3. Solve $x^{6}-3 x^{3}=0$.
4. Solve $x^{8}-6 x^{4}=0$.
5. Solve $x^{4}-81=0$.
6. Solve $x^{2 / 5}+x^{1 / 5}-2=0$.
7. Solve $x^{-2}+3 x^{-1}=0$.

Solutions

1. Let $y=x^{2}$. From this substitution, it follows that $x^{2}=y$ and $x^{4}=y^{2}$.

$$
\begin{aligned}
x^{4}-11 x^{2}+18 & =0 \\
y^{2}-11 y+18 & =0 \text { Factor: two numbers whose product is } 18 \text { and sum is }-11:-9,-2 . \\
(y-9)(y-2) & =0 \\
y-9=0 \text { or } y-2 & =0 \\
y=9 \text { or } y & =2 \text { Now we must back-substitute using } y=x^{2} \text { and solve for } x . \\
x^{2}=9 \text { or } x^{2} & =2 \\
x= \pm 3 \text { or } x & = \pm \sqrt{2}
\end{aligned}
$$

Four solutions: $x=+3,-3,+\sqrt{2},-\sqrt{2}$.
2. Let $y=x^{2}$. From this substitution, it follows that $x^{2}=y$ and $x^{4}=y^{2}$.

$$
\begin{aligned}
3 x^{4}-10 x^{2}-8= & 0 \\
3 y^{2}-10 y-8= & 0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { Quadratic Formula to solve for } y . \\
y & =\frac{-(-10) \pm \sqrt{(-10)^{2}-4(3)(-8)}}{2(3)} \\
y & =\frac{10 \pm \sqrt{196}}{6} \\
y & =\frac{10 \pm 14}{6} \\
y & =\frac{10+14}{6} \text { or } y=\frac{10-14}{6} \\
y & =4 \text { or } y=-\frac{2}{3} \\
x^{2} & =4 \text { or } x^{2}=-\frac{2}{3} \text { Now we must back-substitute. } \\
x & = \pm 2 \text { or } x= \pm \sqrt{-\frac{2}{3}}= \pm i \sqrt{\frac{2}{3}}
\end{aligned}
$$

Four solutions: $x=-2,2,-\sqrt{2 / 3}, \sqrt{2 / 3}$.
3. Let $y=x^{3}$. From this substitution, it follows that $x^{3}=y$ and $x^{6}=y^{2}$.

$$
\begin{aligned}
x^{6}-3 x^{3} & =0 \\
y^{2}-3 y & =0 \\
y(y-3) & =0 \text { Factor to solve for } y . \\
y=0 \text { or } y-3 & =0 \\
y=0 \text { or } y & =3 \\
x^{3}=0 \text { or } x^{3} & =3 \text { Now we must back-substitute. } \\
x=0 \text { or } x & =\sqrt[3]{3}
\end{aligned}
$$

4. Let $y=x^{4}$. From this substitution, it follows that $x^{4}=y$ and $x^{8}=y^{2}$.

$$
\begin{aligned}
x^{8}-6 x^{4} & =0 \\
y^{2}-6 y & =0 \\
y(y-6) & =0 \text { Factor to solve for } y . \\
y=0 \text { or } y-6 & =0 \\
y=0 \text { or } y & =6 \\
x^{4}=0 \text { or } x^{4} & =6 \text { Now we must back-substitute. } \\
x=0 \text { or } x & = \pm \sqrt[4]{6}
\end{aligned}
$$

5. Let $y=x^{2}$. From this substitution, it follows that $x^{2}=y$.

$$
\begin{aligned}
x^{4}-81 & =0 \\
y^{2}-81 & =0 \\
y & = \pm 9 \\
y=9 \text { or } y & =-9 \\
x^{2}=9 \text { or } x^{2} & =-9 \text { Now we must back-substitute. } \\
x= \pm 3 \text { or } x & = \pm \sqrt{-9}= \pm 3 i
\end{aligned}
$$

6. Let $y=x^{1 / 5}$. From this substitution, it follows that $x^{1 / 5}=y$ and $x^{2 / 5}=y^{2}$.

$$
\begin{aligned}
x^{2 / 5}+x^{1 / 5}-2 & =0 \\
y^{2}+y-2 & =0 \\
(y+2)(y-1) & =0 \text { Factor to solve for } y . \\
y+2=0 \text { or } y-1 & =0 \\
y=-2 \text { or } y & =1 \\
x^{1 / 5}=-2 \text { or } x^{1 / 5} & =1 \text { Now we must back-substitute. } \\
x=(-2)^{5} \text { or } x & =1^{5} \\
x=-32 \text { or } x & =1
\end{aligned}
$$

7. Let $y=x^{-1}$. From this substitution, it follows that $x^{-1}=y$ and $x^{-2}=y^{2}$.

$$
\begin{aligned}
x^{-2}+3 x^{-1} & =0 \\
y^{2}+3 y & =0 \\
y(y+3) & =0 \text { Factor to solve for } y . \\
y=0 \text { or } y+3 & =0 \\
y=0 \text { or } y & =-3 \\
x^{-1}=0 \text { or } x^{-1} & =-3 \text { Now we must back-substitute. } \\
x=\frac{1}{0} \text { or } x & =\frac{1}{-3}=-\frac{1}{3}
\end{aligned}
$$

The quantity $\frac{1}{0}$ is not defined (division by zero). There is only one solution, $x=-1 / 3$.

