You must remember to check your solutions and eliminate any extraneous solutions!

Questions

1. Solve $12+\sqrt{4 x+5}=7$.
2. Solve $y-\sqrt{y-3}=5$.
3. Solve $\sqrt{2 y-4}+2=y$.
4. Solve $\sqrt[3]{3-5 x}=2$.
5. Solve $\sqrt{8 x+17}=\sqrt{2 x+8}+3$.
6. Solve $\sqrt{2 x+9}-\sqrt{x+1}=2$.
7. In geology, the water depth d near a mid-ocean spreading ridge depends on the square root of the distance x from the ridge axis according to the relation $d=d_{0}+a \sqrt{x}$, where d_{0} is the depth of the ridge axis and a is some constant. Solve the equation $d=d_{0}+a \sqrt{x}$ for x.
8. Solve Graham's law of effusion (used in molecular chemistry) $\frac{\rho_{1}}{\rho_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}$ for M_{2}, then solve for M_{1}.

Solutions

Technique: Isolate a radical expression; square both sides of equation; solve for unknown; eliminate extraneous solutions.
1.

$$
\begin{aligned}
12+\sqrt{4 x+5} & =7 \\
(\sqrt{4 x+5})^{2} & =(-5)^{2} \\
4 x+5 & =25 \\
4 x & =25-5 \\
4 x & =20 \\
x & =5
\end{aligned}
$$

Check for Extraneous Solutions:

$$
x=5: \quad 12+\sqrt{4(5)+5}=12+\sqrt{25}=12+5=17 \neq 7
$$

So $x=5$ is extraneous, and the original equation has no solution.
2.

$$
\begin{aligned}
y-\sqrt{y-3} & =5 \\
(y-5)^{2} & =(\sqrt{y-3})^{2} \\
y^{2}-10 y+25 & =y-3 \\
y^{2}-11 y+28 & =0 \text { Factor: Two numbers whose sum is }-11 \text { product is } 28:-7,-4 \\
(y-7)(y-4) & =0 \\
y-7=0 \text { or } y-4 & =0 \\
y=7 \text { or } y & =4
\end{aligned}
$$

Check for Extraneous Solutions:

$$
\begin{array}{ll}
y=7: & (7)-\sqrt{(7)-3}=7-\sqrt{4}=7-2=5 \\
y=4: & (4)-\sqrt{(4)-3}=4-\sqrt{1}=3 \neq 5
\end{array}
$$

So $y=7$ is the only solution to the original equation.
3.

$$
\begin{aligned}
\sqrt{2 y-4}+2 & =y \\
(\sqrt{2 y-4})^{2} & =(y-2)^{2} \\
2 y-4 & =(y-2)^{2} \\
2(y-2) & =(y-2)^{2} \text { Need to factor. } \\
2(y-2)-(y-2)^{2} & =0 \\
(y-2)(2-(y-2)) & =0 \\
(y-2)(2-y+2) & =0 \\
(y-2)(4-y) & =0 \\
y-2=0 \text { or } 4-y & =0 \\
y=2 \text { or } y & =4
\end{aligned}
$$

Check for Extraneous Solutions:

$$
\begin{array}{ll}
y=2: & \sqrt{2(2)-4}+2=2 \\
y=4: & \sqrt{2(4)-4}+2=\sqrt{4}+2=4
\end{array}
$$

So both $y=2$ and $y=4$ are solutions.
4. Since we have a cube root, we cube both sides of the equation here.

$$
\begin{aligned}
(\sqrt[3]{3-5 x})^{3} & =(2)^{3} \\
3-5 x & =8 \\
-5 x & =5 \Rightarrow x=-1
\end{aligned}
$$

Check for Extraneous Solutions:

$$
x=-1: \quad \sqrt[3]{3-5(-1)}=\sqrt[3]{8}=2
$$

So $x=-1$ is a solution.
5.

$$
\begin{aligned}
(\sqrt{8 x+17})^{2} & =(\sqrt{2 x+8}+3)^{2} \\
8 x+17 & =2 x+8+9+6 \sqrt{2 x+8} \\
6 x & =6 \sqrt{2 x+8} \\
x & =\sqrt{2 x+8} \\
(x)^{2} & =(\sqrt{2 x+8})^{2} \\
x^{2} & =2 x+8 \\
x^{2}-2 x-8 & =0 \\
(x-4)(x+2) & =0 \\
x-4=0 \text { or } x+2 & =0 \\
x=4 \text { or } x & =-2
\end{aligned}
$$

Check for Extraneous Solutions:

$$
\begin{array}{ll}
x=4: & \sqrt{8(4)+17}=\sqrt{2(4)+8}+3 \Rightarrow \sqrt{49}=\sqrt{16}+3 \Rightarrow 7=7 \text { True } \\
x=-2: & \sqrt{8(-2)+17}=\sqrt{2(-2)+8}+3 \Rightarrow \sqrt{1}=\sqrt{4}+3 \Rightarrow 1=5 \text { False }
\end{array}
$$

So $x=4$ is the only solution.
6.

$$
\begin{aligned}
\sqrt{2 x+9}-\sqrt{x+1} & =2 \\
(\sqrt{2 x+9})^{2} & =(2+\sqrt{x+1})^{2} \\
2 x+9 & =4+4 \sqrt{x+1}+(x+1) \\
2 x+9 & =5+x+4 \sqrt{x+1} \\
x+4 & =4 \sqrt{x+1} \\
(x+4)^{2} & =(4 \sqrt{x+1})^{2} \\
x^{2}+8 x+16 & =16(x+1) \\
x^{2}+8 x+16 & =16 x+16 \\
x^{2}-8 x & =0 \\
x(x-8) & =0 \\
x=0 \text { or } x-8 & =0 \\
x=0 \text { or } x & =8
\end{aligned}
$$

Check for Extraneous Solutions:

$$
\begin{array}{ll}
x=0: & \sqrt{2(0)+9}-\sqrt{(0)+1}=3-1=2 \text { True } \\
x=8: & \sqrt{2(8)+9}-\sqrt{(8)+1}=5-3=2 \text { True }
\end{array}
$$

So both $x=0$ and $x=8$ are solutions.
7.

$$
\begin{aligned}
d & =d_{0}+a \sqrt{x} \\
d-d_{0} & =a \sqrt{x} \\
\frac{d-d_{0}}{a} & =\sqrt{x} \\
\left(\frac{d-d_{0}}{a}\right)^{2} & =(\sqrt{x})^{2} \\
\left(\frac{d-d_{0}}{a}\right)^{2} & =x
\end{aligned}
$$

8.

$$
\begin{aligned}
\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2} & =\left(\sqrt{\frac{M_{2}}{M_{1}}}\right)^{2} \\
\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2} & =\frac{M_{2}}{M_{1}} \\
\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2} M_{1} & =M_{2} \Rightarrow M_{2}=\frac{M_{1} \rho_{1}^{2}}{\rho_{2}^{2}} \\
\left(\frac{\rho_{1}}{\rho_{2}}\right)^{2} & =\left(\sqrt{\frac{M_{2}}{M_{1}}}\right)^{2} \\
\frac{\rho_{1}^{2}}{\rho_{2}^{2}} & =\frac{M_{2}}{M_{1}} \\
\frac{\rho_{2}^{2}}{\rho_{1}^{2}} & =\frac{M_{1}}{M_{2}} \\
\frac{\rho_{2}^{2}}{\rho_{1}^{2}} M_{2} & =M_{1} \Rightarrow M_{1}=\frac{M_{2} \rho_{2}^{2}}{\rho_{1}^{2}}
\end{aligned}
$$

