The mathematical concept of a function is used here in the text, but a more detailed study of functions is seen in Math 1011 Precalculus: Functions.

At this time, we are only concerned with the idea of domain, which essentially means the set of x values we can put into an expression and get a real value out. We use the shorthand notation $f(x)$ to refer to the expression.

Questions

1. Simplify $-\sqrt{\frac{1}{9}}$
2. Simplify $\sqrt{0.04}$.
3. Find the value of the function $f(x)=\sqrt{10 x+5}$ at $x=0, x=1, x=2$, and $x=3$. What is the domain of the function $f(x)$?
4. Find the value of the function $f(x)=\sqrt{1.5 x-4}$ at $x=4, x=6, x=8$, and $x=14$. What is the domain of the function $f(x)$?
5. Simplify $\sqrt[3]{-\frac{8}{27}}$.
6. Replace the radicals with rational exponents in $\sqrt[5]{2 x}$.
7. Replace the radicals with rational exponents in $\sqrt[4]{3 y}$.
8. Replace the radicals with rational exponents in $\sqrt[7]{(a+b)^{3}}$.
9. Simplify $\sqrt[3]{-125 x^{30}}$.
10. Simplify $\sqrt[3]{-27 a^{6}}$.
11. Simplify $\sqrt[4]{a^{12} b^{4}}$.
12. Simplify $\sqrt[4]{a^{4} b^{20}}$.

Solutions

1. $-\sqrt{\frac{1}{9}}=-\sqrt{\left(\frac{1}{3}\right)^{2}}=-\frac{1}{3}$.
2. $\sqrt{0.04}=\sqrt{(0.2)^{2}}=0.2$.
3. Use a calculator to approximate some of the square roots.

$$
\begin{aligned}
& f(x)=\sqrt{10 x+5} \\
& f(0)=\sqrt{10(0)+5}=\sqrt{5} \sim 2.2 \\
& f(1)=\sqrt{10(1)+5}=\sqrt{15} \sim 3.9 \\
& f(2)=\sqrt{10(2)+5}=\sqrt{25}=5 \\
& f(3)=\sqrt{10(3)+5}=\sqrt{35} \sim 5.9
\end{aligned}
$$

For the domain, we know that we can only get a real number out of a square root if we put in a number greater than or equal to zero, so for this expression the domain is

$$
\begin{aligned}
10 x+5 & \geq 0 \\
10 x & \geq-5 \\
x & \geq-\frac{5}{10} \\
x & \geq-\frac{1}{2}
\end{aligned}
$$

The domain is $x \geq-1 / 2$.
4. Use a calculator to approximate the square roots.

$$
\begin{aligned}
f(x) & =\sqrt{1.5 x-4} \\
f(4) & =\sqrt{1.5(4)-4}=\sqrt{2} \sim 1.4 \\
f(6) & =\sqrt{1.5(6)-4}=\sqrt{5} \sim 2.2 \\
f(8) & =\sqrt{1.5(8)-4}=\sqrt{8} \sim 2.8 \\
f(14) & =\sqrt{1.5(14)-4}=\sqrt{17} \sim 4.1
\end{aligned}
$$

For the domain, we know that we can only get a real number out of a square root if we put in a number greater than or equal to zero, so for this expression the domain is

$$
\begin{aligned}
1.5 x-4 & \geq 0 \\
1.5 x & \geq 4 \\
x & \geq \frac{4}{1.5} \\
x & \geq \frac{4}{3 / 2} \\
x & \geq \frac{8}{3}
\end{aligned}
$$

The domain is $x \geq 8 / 3$.
5.

$$
\begin{aligned}
\sqrt[3]{-\frac{8}{27}} & =\left(-\frac{8}{27}\right)^{1 / 3} \\
& =\left(-\frac{2^{3}}{3^{3}}\right)^{1 / 3} \\
& =\left(\left(-\frac{2}{3}\right)^{3}\right)^{1 / 3} \\
& =-\frac{2}{3}
\end{aligned}
$$

6. $\sqrt[5]{2 x}=(2 x)^{1 / 5}$.
7. $\sqrt[4]{3 y}=(3 y)^{1 / 4}$.
8. $\sqrt[7]{(a+b)^{3}}=\left((a+b)^{3}\right)^{1 / 7}=(a+b)^{3 / 7}$.
9.

$$
\begin{aligned}
\sqrt[3]{-125 x^{30}} & =\left(-125 x^{30}\right)^{1 / 3} \\
& =(-125)^{1 / 3}\left(x^{30}\right)^{1 / 3} \\
& =\left((-5)^{3}\right)^{1 / 3} x^{10} \\
& =(-5) x^{10} \\
& =-5 x^{10}
\end{aligned}
$$

10.

$$
\begin{aligned}
\sqrt[3]{-27 a^{6}} & =\left(-27 a^{6}\right)^{1 / 3} \\
& =(-27)^{1 / 3}\left(a^{6}\right)^{1 / 3} \\
& =\left((-3)^{3}\right)^{1 / 3} a^{2} \\
& =(-3) a^{2}=-3 a^{2}
\end{aligned}
$$

11.

$$
\begin{aligned}
\sqrt[4]{a^{12} b^{4}} & =\left(a^{12} b^{4}\right)^{1 / 4} \\
& =\left(a^{12}\right)^{1 / 4}\left(b^{4}\right)^{1 / 4} \\
& =\left(\left(a^{3}\right)^{4}\right)^{1 / 4}|b| \text { Note: Need to use rule that }\left(x^{n}\right)^{1 / n}=|x| \text { if } n \text { is even. } \\
& =\left|a^{3}\right||b|=\left|a^{3} b\right|
\end{aligned}
$$

12.

$$
\begin{aligned}
\sqrt[4]{a^{4} b^{20}} & =\left(a^{4} b^{20}\right)^{1 / 4} \\
& =\left(a^{4}\right)^{1 / 4}\left(b^{20}\right)^{1 / 4} \\
& =|a|\left|b^{5}\right|=\left|a b^{5}\right|
\end{aligned}
$$

