Questions

1. Solve $\frac{8}{x}+\frac{2}{5}=-\frac{2}{x}$.
2. Solve $\frac{x+1}{2 x}=\frac{2}{3}$.
3. Solve $\frac{2}{2 x+5}=\frac{4}{x-4}$.
4. Solve $\frac{3}{x+5}=\frac{3}{3 x-2}$.
5. Solve $7-\frac{x}{x+5}=\frac{5}{x+5}$.
6. Solve $\frac{8 x}{4 x^{2}-1}=\frac{3}{2 x+1}+\frac{3}{2 x-1}$.
7. Solve $\frac{6}{x-5}+\frac{3 x+1}{x^{2}-2 x-15}=\frac{5}{x+3}$.
8. Solve $\frac{6}{x-3}=\frac{-5}{x-2}-\frac{5}{x^{2}-5 x+6}$.

Solutions

1. Lowest common denominator is $5 x$.

$$
\begin{aligned}
\left(\frac{8}{x}\right) 5 x+\left(\frac{2}{5}\right) 5 x & =\left(-\frac{2}{x}\right) 5 x \\
40+2 x & =-10 \\
2 x & =-10-40 \\
x & =-\frac{50}{2}=-25
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{8}{(-25)}+\frac{2}{5} & =-\frac{2}{(-25)} \\
-\frac{8}{25}+\frac{10}{25} & =\frac{2}{25} \\
\frac{2}{25} & =\frac{2}{25} \text { it's a solution }
\end{aligned}
$$

2. LCD is $6 x$.

$$
\begin{aligned}
\left(\frac{x+1}{2 x}\right) 6 x & =\left(\frac{2}{3}\right) 6 x \\
3 x+3 & =4 x \\
3 & =4 x-3 x \\
3 & =x
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{(3)+1}{2(3)} & =\frac{2}{3} \\
\frac{4}{6} & =\frac{2}{3} \\
\frac{2}{3} & =\frac{2}{3} \text { it's a solution! }
\end{aligned}
$$

4. LCD is $(x+5)(3 x-2)$.

$$
\begin{aligned}
\left(\frac{3}{x+5}\right)(x+5)(3 x-2) & =\left(\frac{3}{3 x-2}\right)(x+5)(3 x-2) \\
3(3 x-2) & =3(x+5) \\
3 x-2 & =\frac{\not 2}{\not 2}(x+5) \\
3 x-2 & =x+5 \\
2 x & =7 \\
x & =\frac{7}{2}
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{3}{(7 / 2)+5} & =\frac{3}{3(7 / 2)-2} \\
\frac{3}{7 / 2+10 / 2} & =\frac{3}{21 / 2-4 / 2} \\
\frac{3}{17 / 2} & =\frac{3}{17 / 2} \text { it's a solution }
\end{aligned}
$$

5. LCD is $x+5$.

$$
\begin{aligned}
(7)(x+5)-\left(\frac{x}{x+5}\right)(x+5) & =\left(\frac{5}{x+5}\right)(x+5) \\
7 x+35-x & =5 \\
6 x & =-30 \\
x & =-5
\end{aligned}
$$

As soon as you try to check this in the original equation you will get a division by zero. Therefore $x=-5$ is not a solution. Therefore, the original equation has no solution.
6. Factor polynomials.

$$
4 x^{2}-1=(2 x-1)(2 x+1) \text { difference of squares }
$$

Looking at the equation, we now see the LCD is $(2 x-1)(2 x+1)$.

$$
\begin{aligned}
\left(\frac{8 x}{(2 x-1)(2 x+1)}\right)(2 x-1)(2 x+1) & =\left(\frac{3}{2 x+1}\right)(2 x-1)(2 x+1)+\left(\frac{3}{2 x-1}\right)(2 x-1)(2 x+1) \\
8 x & =3(2 x-1)+3(2 x+1) \\
8 x & =6 x-3+6 x+3 \\
8 x & =12 x \\
-4 x & =0 \\
x & =\frac{0}{-4}=0
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{8(0)}{4(0)^{2}-1} & =\frac{3}{2(0)+1}+\frac{3}{2(0)-1} \\
0 & =3-3 \text { it's a solution }
\end{aligned}
$$

7. Factor polynomials.

$$
x^{2}-2 x-15=(x+3)(x-5) \text { Need two numbers whose product is }-15 \text { sum is }-2: 3,-5
$$

Looking at the equation, we now see the LCD is $(x+3)(x-5)$.

$$
\begin{aligned}
\left(\frac{6}{x-5}\right)(x+3)(x-5)+\left(\frac{3 x+1}{(x+3)(x-5)}\right)(x+3)(x-5) & =\left(\frac{5}{x+3}\right)(x+3)(x-5) \\
6(x+3)+3 x+1 & =5(x-5) \\
6 x+18+3 x+1 & =5 x-25 \\
4 x & =-44 \\
x & =-11
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{6}{(-11)-5}+\frac{3(-11)+1}{(-11)^{2}-2(-11)-15} & =\frac{5}{(-11)+3} \\
\frac{6}{-16}+\frac{-32}{128} & =\frac{5}{-8} \\
\frac{3}{-8}+\frac{-1}{4} & =\frac{5}{-8} \\
-\frac{3}{8}-\frac{2}{8} & =-\frac{5}{8} \\
-\frac{5}{8} & =-\frac{5}{8} \text { it's a solution }
\end{aligned}
$$

8. Factor polynomials.

$$
x^{2}-5 x+6=(x-3)(x-2) \text { Need two numbers whose product is } 6 \text { sum is }-5:-2,-3
$$

Looking at the equation, we now see the LCD is $(x-3)(x-2)$.

$$
\begin{aligned}
\frac{6}{x-3} & =\frac{-5}{x-2}-\frac{5}{(x-3)(x-2)} \\
\left(\frac{6}{x-3}\right)(x-3)(x-2) & =\left(\frac{-5}{x-2}\right)(x-3)(x-2)-\left(\frac{5}{(x-3)(x-2)}\right)(x-3)(x-2) \\
6(x-2) & =-5(x-3)-5 \\
6 x-12 & =-5 x+15-5 \\
11 x & =22 \\
x & =2
\end{aligned}
$$

As soon as you try to check this in the original equation you will get a division by zero. Therefore $x=2$ is not a solution. Therefore, the original equation has no solution.

