When adding or subtracting rational expressions you might have to do a lot of work. In general, you might need to

- factor any polynomials in the expressions
- get a common denominator for the rational expressions (the critical step!)
- add or subtract using $\frac{a}{c} \pm \frac{b}{c}=\frac{a \pm b}{c}$
- simplify the numerator (this could even involve another factoring!)
- simplify further by canceling any common terms in the numerator and denominator

Be careful, show all your work, and make sure minus signs get distributed correctly; for example, $-3 x(x+4)$ is equal to $-3 x^{2}-12 x$ NOT $-3 x^{2}+12 x$.

Questions

1. Simplify $\frac{8 x+3}{5 x+7}-\frac{6 x+10}{5 x+7}$.
2. Find the lowest common denominator for $\frac{1}{x^{2}-9}$ and $\frac{1}{x+3}$.
3. Find the lowest common denominator for $\frac{1}{2 x^{2}-9 x-35}$ and $\frac{1}{4 x^{2}+20 x+25}$.
4. Simplify $\frac{8}{c d}+\frac{9}{d}$.
5. Simplify $\frac{2}{y-1}+\frac{2}{y+1}$.
6. Simplify $\frac{2}{3 x y}+\frac{1}{6 y z}$.
7. Simplify $\frac{6}{3 x-4}-\frac{5}{4 x-3}$.
8. Simplify $\frac{x}{x^{2}+2 x-3}-\frac{x}{x^{2}-5 x+4}$.
9. Simplify $\frac{3 x+5}{x^{2}+4 x+3}+\frac{-x+5}{x^{2}+2 x-3}$.
10. Simplify $\frac{2 x}{x^{2}+5 x+6}-\frac{x+1}{x^{2}+2 x-3}$.

Solutions

1. The denominators are the same, so we can subtract immediately.

$$
\begin{aligned}
\frac{8 x+3}{5 x+7}-\frac{6 x+10}{5 x+7} & =\frac{(8 x+3)-(6 x+10)}{5 x+7} \text { subtract rational expressions with common denominators } \\
& =\frac{8 x+3-6 x-10}{5 x+7} \\
& =\frac{2 x-7}{5 x+7}
\end{aligned}
$$

2. To find lowest common denominator we need to factor.

$$
\begin{aligned}
x^{2}-9 & =(x+3)(x-3) \text { difference of squares } \\
x+3 & =(x+3)
\end{aligned}
$$

The lowest common denominator is $(x+3)(x-3)$. I've highlighted the overlap in red.
3. Factor everything first.

$$
\begin{aligned}
2 x^{2}-9 x-35 & =2 x^{2}-14 x+5 x-35 \text { need two numbers whose product is }-70 \text { and sum is }-9:-14,5 \\
& =2 x(x-7)+5(x-7) \text { factor by grouping } \\
& =(2 x+5)(x-7) \\
4 x^{2}+20 x+25 & =4 x^{2}+10 x+10 x+25 \text { need two numbers whose product is } 100 \text { and sum is } 20: 10,10 \\
& =2 x(2 x+5)+5(2 x+5) \text { factor by grouping } \\
& =(2 x+5)(2 x+5) \text { this was a perfect square } \\
2 x^{2}-9 x-35 & =(2 x+5)(x-7) \\
4 x^{2}+20 x+25 & =(2 x+5)(2 x+5) \\
\mathrm{LCD} \text { is } & (2 x+5)(2 x+5)(x-7)
\end{aligned}
$$

4. Nothing needs to be factored.

$$
\begin{aligned}
\frac{8}{c d}+\frac{9}{d} & =\frac{8}{c d}+\frac{9 \cdot c}{d \cdot c} \text { multiply by appropriate quantities to make the denominators the same. } \\
& =\frac{8}{c d}+\frac{9 c}{c d} \\
& =\frac{8+9 c}{c d} \text { add rational expressions with common denominators }
\end{aligned}
$$

5. Nothing needs to be factored.

$$
\begin{aligned}
\frac{2}{y-1}+\frac{2}{y+1} & =\frac{2(y+1)}{(y-1)(y+1)}+\frac{2(y-1)}{(y+1)(y-1)} \text { multiply by appropriate quantities to make the denominators the same. } \\
& =\frac{2(y+1)+2(y-1)}{(y-1)(y+1)} \text { add rational expressions with common denominators } \\
& =\frac{2 y+2+2 y-2}{(y-1)(y+1)} \text { simplify numerator } \\
& =\frac{4 y}{(y-1)(y+1)}
\end{aligned}
$$

6. Nothing needs to be factored.

$$
\begin{aligned}
\frac{2}{3 x y}+\frac{1}{6 y z} & =\frac{2(2 z)}{3 x y(2 z)}+\frac{1(x)}{6 y z(x)} \\
& =\frac{4 z}{6 x y z}+\frac{x}{6 x y z} \\
& =\frac{4 z+x}{6 x y z}
\end{aligned}
$$

7. Nothing needs to be factored.

$$
\begin{aligned}
\frac{6}{3 x-4}-\frac{5}{4 x-3} & =\frac{6(4 x-3)}{(3 x-4)(4 x-3)}-\frac{5(3 x-4)}{(4 x-3)(3 x-4)} \\
& =\frac{6(4 x-3)-5(3 x-4)}{(3 x-4)(4 x-3)} \\
& =\frac{24 x-18-15 x+20}{(3 x-4)(4 x-3)} \\
& =\frac{9 x+2}{(3 x-4)(4 x-3)}
\end{aligned}
$$

8. We need to factor here.

$$
\begin{aligned}
& x^{2}+2 x-3=(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
& x^{2}-5 x+4=(x-4)(x-1) \text { two numbers whose product is } 4 \text { sum is }-5:-4,-1
\end{aligned}
$$

$$
\begin{aligned}
\frac{x}{x^{2}+2 x-3}-\frac{x}{x^{2}-5 x+4} & =\frac{x}{(x+3)(x-1)}-\frac{x}{(x-4)(x-1)} \\
& =\frac{x(x-4)}{(x+3)(x-1)(x-4)}-\frac{x(x+3)}{(x-4)(x-1)(x+3)} \text { get common denominator } \\
& =\frac{x(x-4)-x(x+3)}{(x+3)(x-1)(x-4)} \text { subtract now that we have common denominator } \\
& =\frac{x^{2}-4 x-x^{2}-3 x}{(x+3)(x-1)(x-4)} \text { simplify } \\
& =\frac{-7 x}{(x+3)(x-1)(x-4)}
\end{aligned}
$$

9. We need to factor here.

$$
\begin{aligned}
x^{2}+4 x+3 & =(x+3)(x+1) \text { two numbers whose product is } 3 \text { sum is } 4: 3,1 \\
x^{2}+2 x-3 & =(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
\frac{3 x+5}{x^{2}+4 x+3}+\frac{-x+5}{x^{2}+2 x-3} & =\frac{3 x+5}{(x+3)(x+1)}+\frac{5-x}{(x+3)(x-1)} \text { factor } \\
& =\frac{(3 x+5)(x-1)}{(x+3)(x+1)(x-1)}+\frac{(5-x)(x+1)}{(x+3)(x-1)(x+1)} \\
& =\frac{(3 x+5)(x-1)}{(x+3)(x+1)(x-1)}+\frac{(5-x)(x+1)}{(x+3)(x-1)(x+1)} \text { get common denominator } \\
& =\frac{(3 x+5)(x-1)+(5-x)(x+1)}{(x+3)(x+1)(x-1)} \text { add } \\
& =\frac{3 x^{2}+2 x-5-x^{2}+4 x+5}{(x+3)(x+1)(x-1)} \text { simplify numerator: distribute } \\
& =\frac{2 x^{2}+6 x}{(x+3)(x+1)(x-1)} \text { simplify numerator: collect like terms } \\
& =\frac{2 x(x+3)}{(x+3)(x+1)(x-1)} \text { simplify: factor numerator } \\
& =\frac{2 x}{(x+1)(x-1)} \text { and } x+3 \neq 0
\end{aligned}
$$

10. We need to factor here.

$$
\begin{aligned}
x^{2}+5 x+6 & =(x+3)(x+2) \text { two numbers whose product is } 6 \text { sum is } 5: 3,2 \\
x^{2}+2 x-3 & =(x+3)(x-1) \text { two numbers whose product is }-3 \text { sum is } 2: 3,-1 \\
\frac{2 x}{x^{2}+5 x+6}-\frac{x+1}{x^{2}+2 x-3} & =\frac{2 x}{(x+3)(x+2)}-\frac{x+1}{(x+3)(x-1)} \text { factor } \\
& =\frac{2 x(x-1)}{(x+3)(x+2)(x-1)}-\frac{(x+1)(x+2)}{(x+3)(x-1)(x+2)} \text { get common denominator } \\
& =\frac{2 x(x-1)-(x+1)(x+2)}{(x+3)(x+2)(x-1)} \text { subtract } \\
& =\frac{2 x^{2}-2 x-x^{2}-3 x-2}{(x+3)(x+2)(x-1)} \text { simplify numerator: distribute } \\
& =\frac{x^{2}-5 x-2}{(x+3)(x+2)(x-1)} \text { simplify numerator: collect like terms }
\end{aligned}
$$

The numerator is prime. If we could factor it, we would.

