Questions

1. Solve $x^{2}-x-20=0$.
2. Solve $x^{2}+11 x+18=0$.
3. Solve $8 x^{2}=72$.
4. Solve $(x-5)(x+4)=2(x-5)$.
5. Solve $\frac{x^{2}+5 x}{6}=4$.
6. Solve $\frac{12 x^{2}-4 x}{5}=8$.
7. The area of a rectangular garden is 140 square meters. The width is 3 meters longer than one-half of the length. Find the length and width of the garden.
8. Jules is standing on a platform 6 meters high and throws a ball straight up as high as he can at a velocity of 13 meters per second. At what time t will the ball hit the ground? How far from the ground is the ball 2 seconds after Jules threw the ball (assume the ball is 6 meters from the ground when it leaves Jules' hand).

Solutions

1.

$$
\begin{aligned}
x^{2}-x-20 & =0 \text { Find two numbers product is }-20 \text { and sum is }-1:-5,4 . \\
(x-5)(x+4) & =0 \text { Use Zero Factor Property. } \\
(x-5)=0 \text { or }(x+4) & =0 \text { Solve each linear equation. } \\
x=5 \text { or } x & =-4
\end{aligned}
$$

Check:

$$
\begin{array}{r}
(5)^{2}-(5)-20=25-25=0 \\
(-4)^{2}-(-4)-20=16-16=0
\end{array}
$$

2.

$$
\begin{aligned}
x^{2}+11 x+18 & =0 \text { Find two numbers product is } 18 \text { and sum is } 11: 2,9 . \\
(x+2)(x+9) & =0 \\
(x+2)=0 \text { or }(x+9) & =0 \\
x=-2 \text { or } x & =-9
\end{aligned}
$$

Check:

$$
\begin{aligned}
& (-2)^{2}+11(-2)+18=4-22+18=0 \\
& (-9)^{2}+11(-9)+18=81-99+18=0
\end{aligned}
$$

3.

$$
\begin{aligned}
8 x^{2}-72 & =0 \text { Factor. } \\
8\left(x^{2}-9\right) & =0 \text { Factor. } \\
x^{2}-9 & =0 \text { Divide by } 8 . \text { Difference of Squares. } \\
(x+3)(x-3) & =0 \\
(x+3)=0 \text { or }(x-3) & =0 \\
x=-3 \text { or } x & =3
\end{aligned}
$$

Check:

$$
\begin{aligned}
8(-3)^{2} & =8(9)
\end{aligned}=72, ~ 子(3)^{2}=8(9)=72
$$

Alternate solution, which only works because there was no x term:

$$
\begin{aligned}
8 x^{2} & =72 \\
x^{2} & =9 \\
\sqrt{x^{2}} & = \pm \sqrt{9} \text { when taking square root of both sides of equation, one side can be } \pm \\
x & = \pm 3
\end{aligned}
$$

4. Start by multiplying everything to get in form $a x^{2}+b x+c=0$.

$$
\begin{aligned}
(x-5)(x+4) & =2(x-5) \\
x^{2}-x-20 & =2 x-10 \\
x^{2}-x-20-2 x+10 & =0 \\
x^{2}-3 x-10 & =0 \text { Find two numbers product is }-10 \text { and sum is }-3:-5,2 . \\
(x-5)(x+2) & =0 \\
(x-5)=0 \text { or }(x+2) & =0 \\
x=5 \text { or } x & =-2
\end{aligned}
$$

Check:

$$
\begin{aligned}
((5)-5)((5)+4)-2((5)-5) & =0 \\
((-2)-5)((-2)+4)-2((-2)-5) & =-14+14=0
\end{aligned}
$$

5. Start by multiplying everything to get in form $a x^{2}+b x+c=0$.

$$
\begin{aligned}
\frac{x^{2}+5 x}{6} & =4 \\
x^{2}+5 x & =24 \\
x^{2}+5 x-24 & =0 \text { Find two numbers product is }-24 \text { and sum is } 5: 8,-3 . \\
(x+8)(x-3) & =0 \\
(x+8)=0 \text { or }(x-3) & =0 \\
x=-8 \text { or } x & =3
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{(-8)^{2}+5(-8)}{6} & =\frac{64-40}{6}=\frac{24}{6}=4 \\
\frac{(3)^{2}+5(3)}{6} & =\frac{9+15}{6}=\frac{24}{6}=4
\end{aligned}
$$

6. Start by multiplying everything to get in form $a x^{2}+b x+c=0$.

$$
\begin{aligned}
\frac{12 x^{2}-4 x}{5} & =8 \\
12 x^{2}-4 x & =40 \\
12 x^{2}-4 x-40 & =0 \\
3 x^{2}-x-10 & =0 \text { Grouping Method: Find two numbers product is }-30 \text { and sum is }-1:-6,5 . \\
3 x^{2}-6 x+5 x-10 & =0 \text { Factor by grouping. } \\
3 x(x-2)+5(x-2) & =0 \\
(3 x+5)(x-2) & =0 \\
(3 x+5)=0 \text { or }(x-2) & =0 \\
x=-\frac{5}{3} \text { or } x & =2
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{12(-5 / 3)^{2}-4(-5 / 3)}{5} & =\frac{12(25 / 9)+20 / 3}{5}=\frac{100 / 3+20 / 3}{5}=\frac{120 / 3}{5}=\frac{40}{5}=8 \\
\frac{12(2)^{2}-4(2)}{5} & =\frac{48-8}{5}=\frac{40}{5}=8
\end{aligned}
$$

7. Let x be the length (in meters). Then the width is $\frac{x}{2}+3$ meters. Area is $140 \mathrm{~m}^{2}$.

$$
\begin{aligned}
\text { Area } & =(\text { length })(\text { width }) \\
140 & =x\left(\frac{x}{2}+3\right) \\
140 & =\frac{x^{2}}{2}+3 x \text { write in form } a x^{2}+b x+c=0 . \\
280 & =x^{2}+6 x \\
0 & =x^{2}+6 x-280 \\
x^{2}+6 x-280 & =0 \text { Find two numbers product is } 6 \text { and sum is }-280:-14,20 . \\
(x-14)(x+20) & =0 \\
(x-14)=0 \text { or }(x+20) & =0 \\
x=14 \text { or } x & =-20
\end{aligned}
$$

Exclude the $x=-20$ as unphysical (can't have negative length). So The length is $x=14$ meters. Width is 10 meters.
8. Set $h=6$ and $v=13$ in our model equation $S=-5 t^{2}+v t+h$ (see handout).

$$
\begin{aligned}
-5 t^{2}+13 t+6 & =0 \text { Ball hits ground when } S=0 . \text { Use Grouping Method to factor. } \\
-5 t^{2}+13 t+6 & =0 \text { Find two numbers product is }-30 \text { and sum is } 13: 15,-2 . \\
-5 t^{2}+15 t-2 t+6 & =0 \\
-5 t(t-3)-2(t-3) & =0 \\
(-5 t-2)(t-3) & =0 \\
(-5 t-2)=0 \text { or }(t-3) & =0 \\
t=-2 / 5 \text { or } t & =3
\end{aligned}
$$

Exclude the $t=-5 / 3$ as unphysical, so the ball hits the ground after 3 seconds.
Two second after throwing the ball, it it $S=-5(2)^{2}+13(2)+6=-20+26+6=12$ meters above the ground.

