When working with polynomials, it is important to understand what the definition of like terms is. You might want to review Section 1.7 Combining Like Terms.

Questions

1. State the degree of the polynomial $5 x y^{2}-3 x^{2} y^{3}$, and whether it is a monomial, binomial, or trinomial.
2. State the degree of the polynomial $7 x^{3} y+5 x^{4} y^{4}$, and whether it is a monomial, binomial, or trinomial.
3. Subtract $(2 x-19)-(-3 x+5)$.
4. Subtract $\left(\frac{3}{8} x^{2}-\frac{2}{3} x-7\right)-\left(\frac{2}{3} x^{2}-\frac{1}{2} x+2\right)$.
5. Simplify $\left(3 x^{4}-4 x^{2}-18\right)-\left(2 x^{4}+3 x^{3}+6\right)$.
6. Simplify $\left(2 b^{3}+3 b-5\right)-\left(-3 b^{3}+5 b^{2}+7 b\right)$.
7. The lengths and widths of three rectangles are labeled below. Create a polynomial that describes the the sum of the area of these three rectangles.

12

$2 x$
8. The dimensions of the sides of the following figure are labeled. Create a polynomial that describes the perimeter of the figure.

Solutions

1. Two terms, so it is a binomial. Degree is 5 , since term $3 x^{2} y^{3}$ has sum of exponents of the variables which is 5 (other term has smaller sum of exponents).
2. Two terms, so it is a binomial. Degree is 8 , sin ce term $5 x^{4} y^{4}$ has sum of exponents of the variables which is 8 (largest sum for all terms).
3. $(2 x-19)-(-3 x+5)=2 x-19+3 x-5=5 x-24$
4.

$$
\begin{aligned}
\left(\frac{3}{8} x^{2}-\frac{2}{3} x-7\right)-\left(\frac{2}{3} x^{2}-\frac{1}{2} x+2\right) & =\frac{3}{8} x^{2}-\frac{2}{3} x-7-\frac{2}{3} x^{2}+\frac{1}{2} x-2 \text { distribute } \\
& =\left(\frac{3}{8}-\frac{2}{3}\right) x^{2}+\left(-\frac{2}{3}+\frac{1}{2}\right) x+(-7-2) \text { collect like terms } \\
& =\left(\frac{9}{24}-\frac{16}{24}\right) x^{2}+\left(-\frac{4}{6}+\frac{3}{6}\right) x-9 \text { common denominator to add fractions } \\
& =\left(-\frac{7}{24}\right) x^{2}+\left(-\frac{1}{6}\right) x-9 \text { simplify }
\end{aligned}
$$

5. $\left(3 x^{4}-4 x^{2}-18\right)-\left(2 x^{4}+3 x^{3}+6\right)=3 x^{4}-4 x^{2}-18-2 x^{4}-3 x^{3}-6=x^{4}-3 x^{3}-4 x^{2}-24$
6. $\left(2 b^{3}+3 b-5\right)-\left(-3 b^{3}+5 b^{2}+7 b\right)=2 b^{3}+3 b-5+3 b^{3}-5 b^{2}-7 b=5 b^{3}-5 b^{2}-4 b-5$
7. Area $=x^{2}+12 x+(2 x) x=3 x^{2}+12 x$.
8. Perimeter $=34+x+8+2 x+x+x+12+x+5+x+8=7 x+67$.
