Questions

Note: The negative exponent rule is extremely useful, but it isn't discussed in the test until Section 5.2.

- Negative Exponent: $x^{-n}=\frac{1}{x^{n}}$, if $x \neq 0$.

Knowing the negative exponent rule means you don't need to mess around with different cases when dealing with the quotient rule $\frac{x^{a}}{x^{b}}=x^{a-b}$. Feel free to use it here.

1. To use the rules of exponents (except for product raised to a power and quotient raised to a power), what must be true of the bases? Write down the rules of exponents.
2. Evaluate $3 x^{0}$ and $(3 x)^{0}$. Why are the results different?
3. Multiply $\left(7^{4}\right)\left(7^{6}\right)$.
4. Multiply $w^{12} \cdot w^{20}$.
5. Multiply $\left(-16 x^{2} y^{4}\right)\left(-5 x y^{3}\right)$.
6. Multiply $\left(-12 x^{4} y\right)\left(-7 x^{5} y^{3}\right)$.
7. Multiply $\left(-8 x^{3} y^{2}\right)\left(3 x y^{5}\right)$.
8. Divide. Assume all variables in denominators are nonzero. $\frac{48 x^{5} y^{3}}{24 x y^{3}}$.
9. Divide. Assume all variables in denominators are nonzero. $\frac{45 a^{4} b^{3}}{15 a^{4} b^{2}}$.
10. Divide. Assume all variables in denominators are nonzero. $\frac{16 x^{5} y}{-32 x^{2} y^{3}}$.
11. What expression can be multiplied by $-3 x^{3} y z$ to obtain $81 x^{8} y^{2} z^{4}$?
12. Simplify $\left(\frac{8}{y^{5}}\right)^{2}$.
13. Simplify $\left(\frac{a^{3} b}{c^{5} d}\right)^{5}$.

Solutions

1. The bases must be the same. The rules of exponents are:

- $x^{0}=1$ if $x \neq 0\left(0^{0}\right.$ is indeterminant and is dealt with in calculus).
- Product Rule: $x^{a} \cdot x^{b}=x^{a+b}$.
- Quotient Rule: $\frac{x^{a}}{x^{b}}=x^{a-b}$.
- Power Rule: $\left(x^{a}\right)^{b}=x^{a b}$.
- Product Raised to Power Rule: $(x y)^{a}=x^{a} y^{a}$.
- Quotient Raised to a Power Rule: $\left(\frac{x}{y}\right)^{a}=\frac{x^{a}}{y^{a}}$ if $y \neq 0$.
- Negative Exponent: $x^{-n}=\frac{1}{x^{n}}$, if $x \neq 0$.

2. The results are different because the bases are different (one has base x, the other base $3 x$).

$$
\begin{aligned}
3 x^{0} & =3(1)=1 \\
(3 x)^{0} & =1
\end{aligned}
$$

3. $\left(7^{4}\right)\left(7^{6}\right)=7^{4+6}=7^{10}$
4. $w^{12} \cdot w^{20}=w^{12+20}=w^{32}$
5. $\left(-16 x^{2} y^{4}\right)\left(-5 x y^{3}\right)=80 x^{2+1} y^{4+3}=80 x^{3} y^{7}$
6. $\left(-12 x^{4} y\right)\left(-7 x^{5} y^{3}\right)=84 x^{4+5} y^{1+3}=84 x^{9} y^{4}$
7. $\left(-8 x^{3} y^{2}\right)\left(3 x y^{5}\right)=-24 x^{3+1} y^{2+5}=-24 x^{4} y^{7}$
8. $\frac{48 x^{5} y^{3}}{24 x y^{3}}=2 x^{5-1} y^{3-3}=2 x^{4} y^{0}=2 x^{4}$
9. $\frac{45 a^{4} b^{3}}{15 a^{4} b^{2}}=3 a^{4-4} b^{3-2}=3 a^{0} b^{1}=3 b$
10. $\frac{16 x^{5} y}{-32 x^{2} y^{3}}=-\frac{1}{2} x^{5-2} y^{1-3}=-\frac{1}{2} x^{3} y^{-2}=-\frac{x^{3}}{2 y^{2}}$
11.

$$
\begin{aligned}
(\text { something })\left(-3 x^{3} y z\right) & =81 x^{8} y^{2} z^{4} \\
\text { something } & =\frac{81 x^{8} y^{2} z^{4}}{-3 x^{3} y z}=-27 x^{8-3} y^{2-1} z^{4-1}=-27 x^{5} y z^{3}
\end{aligned}
$$

12. $\left(\frac{8}{y^{5}}\right)^{2}=\frac{8^{2}}{\left(y^{5}\right)^{2}}=\frac{64}{y^{5 \cdot 2}}=\frac{64}{y^{10}}$
13. $\left(\frac{a^{3} b}{c^{5} d}\right)^{5}=\frac{\left(a^{3} b\right)^{5}}{\left(c^{5} d\right)^{5}}=\frac{\left(a^{3}\right)^{5}(b)^{5}}{\left(c^{5}\right)^{5}(d)^{5}}=\frac{a^{15} b^{5}}{c^{25} d^{5}}$
