Questions

1. Solve for x when $\frac{1}{9} x=4$.
2. Solve for x when $-35=21 x$.
3. Solve for x when $-3.9 x=-15.6$.
4. Find the value of the variable that satisfies $2 x-7 x=20$.
5. Find the value of the variable that satisfies $-6 x-3 x=-7$.
6. Find the value of the variable that satisfies $\frac{3}{5} x=39$.
7. We have said that if $a=b$ and $c \neq 0$, then $a c=b c$. Why is it important that $c \neq 0$? What would happen if we tried to solve an equation by multiplying both sides by zero?
8. We have said that if $a=b$ and $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$. Why is it important that $c \neq 0$? What would happen if we tried to solve an equation by dividing both sides by zero?
9. In an average year, worldwide, there are 20 earthquakes of magnitude 7 on the Richter scale. If next year is predicted to be an exceptional year, and the number of earthquakes of magnitude 7 is expected to increase by 35%, about how many earthquakes of magnitude 7 can be expected?

Solutions

1.

$$
\begin{aligned}
9 \cdot \frac{1}{9} x & =4 \cdot 9 \\
x & =36
\end{aligned}
$$

2.

$$
\begin{aligned}
-35 & =21 x \\
\frac{1}{21} \cdot(-35) & =\frac{1}{21} \cdot 21 x \\
-\frac{7 \cdot 5}{7 \cdot 3} & =x \\
-\frac{5}{3} & =x
\end{aligned}
$$

3.

$$
\begin{aligned}
\frac{1}{-3.9} \cdot(-3.9 x) & =\frac{1}{-3.9} \cdot(-15.6) \\
x & =\frac{15.6}{3.9}=4
\end{aligned}
$$

4.

$$
\begin{gathered}
2 x-7 x=20 \text { simplify } \\
-5 x=20 \\
\frac{1}{-5} \cdot(-5 x)=\frac{1}{-5} \cdot(20) \text { multiplication principal } \\
x=-4 \text { simplify }
\end{gathered}
$$

5.

$$
\begin{aligned}
-6 x-3 x & =-7 \\
-9 x & =-7 \\
\frac{1}{-9} \cdot(-9 x) & =\frac{1}{-9} \cdot(-7) \\
x & =\frac{7}{9}
\end{aligned}
$$

6.

$$
\begin{aligned}
\frac{3}{5} x & =39 \\
\frac{5}{3} \cdot\left(\frac{3}{5} x\right) & =\frac{5}{3} \cdot 39 \\
x & =\frac{39 \cdot 5}{3}=\frac{\not \partial \cdot 13 \cdot 5}{\not 2}=65
\end{aligned}
$$

7. When we solve an equation, we are performing algebraic steps to obtain equivalent equations until we arrive at $x=$ something. When we multiply an equation by zero, we do not have an equivalent equation, since the new equation is immediately satisfied.

Consider the following

$$
\begin{aligned}
& 3=4 \text { is false } \\
& 0 \cdot 3=0 \cdot 4 \text { multiply by zero } \\
& 0=0 \text { simplify, and we get a true statement! }
\end{aligned}
$$

The first and last statements are not equivalent.
8. As soon as we divide something by zero, we get an undefined quantity and have to stop.
9. We need a number that is 35% larger than 20 .
35% of 20 is $0.35 \cdot 20=7$.
Expect $20+7=27$ earthquakes of magnitude 7 of more next year.

