Questions

1. Evaluate $3 x^{2}-5 x$ when $x=-3$.
2. Evaluate $x^{2}-7 x+3$ when $x=3$.
3. Evaluate $\frac{a^{2}+a b}{3 b}$ when $a=-1$ and $b=-2$.
4. A park has a triangular piece of land on the border. The altitude of the triangle is 400 ft . The base of the triangle is 280 ft . What is the area of this piece of land?
5. The radius of a circular opening on a chemistry flask is 4 cm . What is the area of the opening?
6. Find the total cost of making a triangular sail that has a base dimension of 12 ft and a height of 20 ft if the price of making the sail is $\$ 19.50$ per square ft .
7. Dry ice is sold as carbon dioxide. Dry ice does not melt, it goes directly from solid state to gaseous state. Dry ice changes from a solid to a gas at $-109.3^{\circ} \mathrm{F}$. What is this temperature in Celsius?

Solutions

1. Write the equation using brackets where there are $x \mathrm{~s}$:

$$
\begin{aligned}
\text { value } & =3(\quad)^{2}-5(\quad) \\
& =3(-3)^{2}-5(-3) \text { put }-3 \text { in the brackets } \\
& =3(9)+15 \text { simplify } \\
& =27+15=42
\end{aligned}
$$

2. Evaluate $x^{2}-7 x+3$ when $x=3$.

$$
\begin{aligned}
\text { value } & =(\quad)^{2}-7(\quad)+3 \\
& =(3)^{2}-7(3)+3 \\
& =9-21+3=-9
\end{aligned}
$$

3. If you have trouble doing two variables, do it in two steps.

$$
\begin{aligned}
\text { value } & =\frac{()^{2}+(\quad) b}{3 b} \text { do } a \text { first } \\
& =\frac{(-1)^{2}+(-1) b}{3 b} \text { put in } a=-1 \\
& =\frac{1-b}{3 b} \text { simplify } \\
& =\frac{1-(\quad)}{3(\quad)} \text { now do } b \\
& =\frac{1-(-2)}{3(-2)} \text { put in } b=-2 \\
& =-\frac{3}{3(2)} \text { simplify } \\
& =-\frac{\not p}{\not \supset(2)} \text { simplify } \\
& =-\frac{1}{2}
\end{aligned}
$$

4. Include the units.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}(\text { base })(\text { perpendicular height }) \\
& =\frac{1}{2}(280 \mathrm{ft})(400 \mathrm{ft}) \\
& =56000 \mathrm{ft}^{2}
\end{aligned}
$$

5.

$$
\begin{aligned}
\text { Area of Circle } & =\pi(\mathrm{radius})^{2} \\
& =\pi(4 \mathrm{~cm})^{2} \\
& =\pi\left(16 \mathrm{~cm}^{2}\right) \\
& =16 \pi \mathrm{~cm}^{2} \sim 50.2 \mathrm{~cm}^{2}
\end{aligned}
$$

6. First, find the area of the sail.

$$
\begin{aligned}
\text { Area of triangle } & =\frac{1}{2}(\text { base })(\text { perpendicular height }) \\
& =\frac{1}{2}(12 \mathrm{ft})(20 \mathrm{ft}) \\
& =120 \mathrm{ft}^{2} \\
\text { Total Cost } & =(\text { area })(\text { cost per square } \mathrm{ft}) \\
& =\left(120 \mathrm{ft}^{2}\right)\left(\$ 19.50 \frac{1}{\boldsymbol{x t}^{2}}\right) \\
& =\$ 2340
\end{aligned}
$$

7.

$$
\begin{aligned}
T_{C} & =\frac{5}{9}\left(T_{F}-32\right) \\
& =\frac{5}{9}(-109.3-32) \\
& =-78.5^{\circ} \mathrm{C}
\end{aligned}
$$

