Mathematica quick reference

Items marked with should be mastered within the first two weeks of the semester.

- Arithmetic

Syntax	Read As	Example
$-,+, *, /$	subtraction, addition, multiplication, division	$2 * \mathrm{x}-4 / \mathrm{x}$
space	multiplication	k x is the same as $\mathrm{k} * \mathrm{x}$
\wedge	exponentiation	$2 \wedge 3$

Common error: forgetting the space in multiplication: kx does not equal k times x .

-Brackets

Syntax	Read As	Use	Example
[]	square brackets	enclosing arguments of functions	Sin [2.5]
()	parentheses	grouping terms algebraically	$\left(3 x-x^{\wedge} 3\right)^{\wedge}(7 / 2)$
\{ \}	curly braces	lists, ordered pairs	Plot[f[x], $\{\mathrm{x}, 0,2\}$]

Common errors: missing parentheses in algebra: $x / 2+x$ is not the same as $x /(2+x)$ using parentheses for functions

-Built-in Functions

Function	Syntax	Function	Syntax	Function	Syntax
$\sin (x)$	Sin $[\mathrm{x}]$	$\cos (x)$	$\operatorname{Cos}[\mathrm{x}]$	$\tan (x)$	$\operatorname{Tan}[\mathrm{x}]$
$\arcsin (x)$	$\operatorname{ArcSin}[\mathrm{x}]$	$\arccos (x)$	$\operatorname{ArcCos}[\mathrm{x}]$	$\arctan (x)$	$\operatorname{ArcTan}[\mathrm{x}]$
$\ln (x)$	$\log [\mathrm{x}]$	$\log _{a}(x)$	$\log [\mathrm{a}, \mathrm{x}]$	e^{x}	$\operatorname{Exp}[\mathrm{x}], \mathrm{E} \mathrm{x}$
\sqrt{x}	Sqrt $[\mathrm{x}], \mathrm{x}^{\wedge}(1 / 2)$	$n!$	$\mathrm{n}!$	$\sqrt[3]{x}$	CubeRoot $[\mathrm{x}]$
$\sqrt[n]{(-x)}$	Surd $[-\mathrm{x}, \mathrm{n}]$			$x^{3 / 5}$	Surd $\left[\mathrm{x}^{\wedge} 3,5\right]$

Common errors: capitalization. Mathematica is picky! All built-in functions begin with a capital letter. using exponentiation (e.g. $x^{3 / 5}$) for nth roots of negative numbers

-Built-in Constants and Symbols

Constant	π	e	i	∞
Syntax	Pi, ESC p ESC	E	I	Infinity, ESC inf ESC

Common error: using e instead of E , using I for ∞

Keyboard Shortcuts

Raised exponents
Stacked fractions
Radical ($\sqrt{ }$)
List commands
Make Template
use Ctrl+^ (or Ctrl+6)
use Ctrl+/
use Ctrl+2
type the first three letters and Cmd +k (Mac) or Ctrl+k (PC) type full command name Cmd + Shift +k (Mac) or Ctrl+Shift+k (PC)

Symbolic vs Numeric output

Mathematica works symbolically (algebraically) and gives exact answers unless instructed otherwise. Use a decimal in a number (eg, Pi/3.0 instead of $\mathrm{Pi} / 3$) or the $\mathrm{N}[$] command to get a decimal expansion. Use N [expr, n] or SetPrecision [expr, n] to display n significant digits.

Getting help

Use ?CommandName or the Documentation Center to get more information on specific commands.

- Equal Signs

Syntax	Read As	Use	Example
$=$	set equal to	defining variables and some functions	$\mathrm{a}=3.2$
$:=$	set delayed	defining functions	$\mathrm{f}\left[\mathrm{x}_{-}\right]:=3 \mathrm{x}-7$
$==$	equal	equations	Solve $\left[\mathrm{x}^{\wedge} 2==3, \mathrm{x}\right]$

-Solving Equations

Syntax	Use	Example
Solve []	solves equation(s) exactly using algebra	Solve $\left[\left\{x==3 \mathrm{y}-2, \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 4==3\right\},\{\mathrm{x}, \mathrm{y}\}\right]$
NSolve []	decimal expansion of algebraic solution	NSolve $\left[\left\{\mathrm{x}==3 \mathrm{y}-2, \mathrm{x}^{\wedge} 2+\mathrm{y} \wedge 4==3\right\},\{\mathrm{x}, \mathrm{y}\}\right]$
FindRoot []	numerically approximates ONE solution returns solution near $x=x_{0}$	FindRoot $\left[\mathrm{x}^{\wedge} 2==3 \operatorname{Sin}[\mathrm{x}],\{\mathrm{x}, \mathrm{x} 0\}\right]$

$\begin{array}{ll}\text { Common errors: } & \text { Using }=\text { instead of }==. \text { May need to use Clear }[] \text { to recover. } \\ & \text { Warning: Some versions of Mathematica will reformat }==\text { as }=\text {, making this error hard to identify. } \\ & \text { Entering an interval instead of a single initial guess in FindRoot }[] .\end{array}$

-Defining Your Own Functions

You tell Mathematica which variables are the independent variables using an underscore. Use := instead of $=$ to enable syntactic color-coding.

```
f[\mp@subsup{x}{-}{}]:=Sin[x^2+7x]+Cos[x] g[x, t_]:=E^x Sin[t]
```


Plotting and Plot Options

Plot type	Syntax
- plot $f(x)$ on interval $[a, b]$	Plot[f[x], $\mathrm{x}, \mathrm{a}, \mathrm{b}\}$]
- plot $f(x)$ and $g(x)$ together	Plot [\{f [x], g[x] , \{x, a, b\}]
Implicit plot of $f(x, y)=0$ in \mathbb{R}^{2} over $a \leq x \leq b$ and $c \leq y \leq d$	ContourPlot[f[x,y]==0, \{x,a,b\}, \{y, c, d\}]
Parametric plot of $x=x(t), y=y(t)$ with $a \leq t \leq b$	ParametricPlot[\{x[t],y[t]\}, t , $\mathrm{a}, \mathrm{b}\}$]
plotting list of data points	ListPlot [\{\{1,2\}, \{2, 3\}, \{3, 6\}\}, Joined->True]
Plotting in \mathbb{R}^{3}	Plot3D[], ParametricPlot3D[], ContourPlot3D[]
Plot $f(x)$ with thick curve	Plot[f[x], \{x, -2, 5\}, PlotStyle->Thick]
Plot f with displayed y-range to $3 \leq y \leq 7$	Plot[f[x], \{x, -2,5\}, PlotRange->\{\{-2,5\}, \{3, 7\}\}]
shade between curve and axis	Plot[f[x], $\mathrm{x},-2,5\}$, Filling->Axis]
shade between two curves	Plot[\{f [x],g[x]\},\{x,-2,5\},Filling->\{1\}]

Working with Functions

Mathematical Operation	usual notation	Syntax
evaluate a function	$f(3)$	$\mathrm{f}[3]$
differentiate	$\frac{d}{d x} f(x)$ or $f^{\prime}(x)$	$\mathrm{D}[\mathrm{f}[\mathrm{x}], \mathrm{x}]$ or $\mathrm{f}^{\prime}[\mathrm{x}]$
indefinite integral	$\int f(x) d x$	Integrate $[\mathrm{f}[\mathrm{x}], \mathrm{x}]$
definite integral (exact)	$\int_{a}^{b} f(x) d x$	Integrate $[\mathrm{f}[\mathrm{x}],\{\mathrm{x}, \mathrm{a}, \mathrm{b}\}]$
definite integral (approx)	$\int_{a}^{b} f(x) d x$	NIntegrate $[\mathrm{f}[\mathrm{x}],\{\mathrm{x}, \mathrm{a}, \mathrm{b}\}]$

Other Useful Commands

Syntax	Use	Example
Simplify []	attempts to simplify expression	Simplify [x (2-x) -3x+1]
Factor []	attempts to factor expression	Factor $\left[x^{\wedge} 3+3 x^{\wedge} 2+3 x+1\right]$
Expand []	multiplies out (expands)	Expand [($\left.\mathrm{x}-7)\left(\mathrm{x}^{\wedge} 2-11 \mathrm{x}-1\right)^{\wedge} 3\right]$
Apart []	partial fraction decomposition of $\frac{f(x)}{g(x)}$	Apart $\left[(3 x-2)\left(x^{\wedge} 2-1\right)\right]$
Eliminate[]	eliminate a variable from set of equations	Eliminate [$\left.\left\{\mathrm{x}==\mathrm{t}^{\wedge} 2+1, \mathrm{y}==5 / \mathrm{t}\right\}, \mathrm{t}\right]$
Reduce []	symbolically solves equations giving conditions	Reduce [\{x+Cos [x*y] ==0\}, $\{\mathrm{x}, \mathrm{y}\}]$]

