- c The two variables-added-in-order tests are: - i H_0 : $\beta_2 = 0$ vs. H_A : $\beta_2 \neq 0$ in the model $Y = \beta_0 + \beta_2 X_2 + E$. From part (a) above: F = 0.59; df: 1, 51; P > 0.25. At $\alpha = 0.05$, we would not reject H_0 and conclude that $\beta_2 = 0$. - ii H_0 : $\beta_1 = 0$ vs. H_A : $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$. $F(X_1|X_2) = 11.76$ df: 1, 50 P = 0.0012 At $\alpha = 0.05$, we would reject H_0 and conclude that $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$. **d** Using Type III sum of squares provided in the SAS output, the variables-added-last tests are: | <u>Source</u> | <u>df</u> | <u>SS</u> | MS | <u>F</u> | |---------------|-----------|-----------|----------|----------| | $X_1 X_2$ | 1 | 2596.024 | 2596.024 | 11.76 | | $X_2 X_1$ | 1 | 1218.014 | 1218.014 | 5.52 | | Residual | 50 | 11037.298 | 220.746 | | | Total | 52 | 13791.17 | | | - e X_2 alone does not significantly aid in predicting Y. X_2 is important when added to a model that already contains X_1 . - \mathbf{f} X_1 and X_2 both appear to be necessary, according to the variables-added-in-order and variables-added-last tests.