- c The two variables-added-in-order tests are:
 - i H_0 : $\beta_2 = 0$ vs. H_A : $\beta_2 \neq 0$ in the model $Y = \beta_0 + \beta_2 X_2 + E$. From part (a) above: F = 0.59; df: 1, 51; P > 0.25. At $\alpha = 0.05$, we would not reject H_0 and conclude that $\beta_2 = 0$.
 - ii H_0 : $\beta_1 = 0$ vs. H_A : $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$. $F(X_1|X_2) = 11.76$ df: 1, 50 P = 0.0012

At $\alpha = 0.05$, we would reject H_0 and conclude that $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$.

d Using Type III sum of squares provided in the SAS output, the variables-added-last tests are:

<u>Source</u>	<u>df</u>	<u>SS</u>	MS	<u>F</u>
$X_1 X_2$	1	2596.024	2596.024	11.76
$X_2 X_1$	1	1218.014	1218.014	5.52
Residual	50	11037.298	220.746	
Total	52	13791.17		

- e X_2 alone does not significantly aid in predicting Y. X_2 is important when added to a model that already contains X_1 .
- \mathbf{f} X_1 and X_2 both appear to be necessary, according to the variables-added-in-order and variables-added-last tests.