Chapter 17

Note: wherever possible, values used in the solutions below are taken directly from the SAS output provided in the text.

1. a <u>Treatment</u> Mean Std. Deviation 1 7.5 1.643 2 5 1.265 3 4.333 1.033 4 5.167 1.472 5 6.167 2.041 Overall Mean: $\overline{Y} = 5.633$

b ANOVA table

c
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = 0$ H_A : at least two treatment means are different.
 $F = \frac{9.117}{2.34} = 3.896 \, (4, 25 \, \text{df}) \ P = 0.0136$

At α =0.05 we reject H_0 and conclude that at least two treatments have different population means

d Estimates of true effects $(\mu_i - \mu)$ where μ is the overall mean, i.e. $\mu = \frac{1}{5} \sum_{i=1}^{5} \mu_i$, μ_i =the population mean for the i^{th} treatment:

Treatment (i)	$\overline{Y}_i - \overline{Y}$
1	1.8667
2	-0.6333
3	-1.3000
4	-0.4667
5	0.5333
Total $\sum_{i=1}^{5} (\overline{Y}_i - \overline{Y}) = 0.000$	