Chapter 13

Note: wherever possible, values used in the solutions below are taken directly from the SAS output provided in the text.

1. a
$$SBP = \beta_0 + \beta_1 QUET + \beta_2 SMK + E$$

b For smokers: $SBP = (\beta_0 + \beta_2) + \beta_1 QUET + E$

 $\overline{SBP}(adj) = (63.876 + 8.571) + (22.116)(3.441) = 148.548$

For nonsmokers: $SBP = \beta_0 + \beta_1 QUET + E$

 $\overline{SBP}(adj) = 63.876 + (22.116)(3.441) = 139.977$

Adjusted Unadjusted

Smokers 148.548 147.823 Nonsmokers 139.977 140.800

The difference in adjusted means is slightly larger than the difference in unadjusted means.

c $H_0: \beta_2 = 0$ $H_A: \beta_2 \neq 0$ in the model $SBP = \beta_0 + \beta_1 QUET + \beta_2 SMK + E$

Test statistic: T = 2.707

T follows a t distribution with 29 degrees of freedom (df) under H_0 .

P-value: $P = 2pr(T \ge 2.707) = 0.011$

At a = 0.05 we reject H_0 and conclude that mean SBP is different for smokers and nonsmokers after adjusting for QUET.

d Finding the 95% confidence interval for the true difference in adjusted mean SBP is equivalent to finding the 95% confidence interval for $\hat{\beta}$,

i.e.
$$\overline{SBP_{SMK}}$$
 (adj) - $\overline{SBP_{NOW}}$ (adj) = 8.571 = $\hat{\beta}_2$

The 95 % confidence interval for $\hat{\beta}_i$ equals:

 $\hat{\beta}_2 \pm t_{29,0.925} \cdot S_{\hat{\alpha}_1} = 8.571 \pm (2.045)(3.167) = (2.094, 15.048)$