Chapter 12

Note: wherever possible, values used in the solutions below are taken directly from the SAS output provided in the text.

1. **a** For smokers: $\hat{Y} = 79.225 + 20.118X$ For non-smokers: $\hat{Y} = 49.312 + 26.303X$

$$\mathbf{b} \quad H_0: \beta_{1SMK} = \beta_{1\overline{SMK}} \qquad H_A: \beta_{1SMK} < \beta_{1\overline{SMK}}$$

We need the following values from the output provided:

	n	$\hat{eta}_{\!\scriptscriptstyle 0}$	$\hat{eta}_{\!\scriptscriptstyle 1}$	$\overline{ar{X}}$	\overline{Y}	S_X^2	$S_{Y X}^2$
Non-smokers	15	49.312	26.303	3.478	140.8	0.176	48.274
Smokers	17	79.255	20.118	3.408	147.824	0.322	107.620

We also need $S_{p,Y|X}^2$, the pooled estimate of σ^2 , which is determined as follows:

$$S_{p,Y|X}^2 = \frac{(n_{\overline{S}} - 2)S_{Y|X_{\overline{S}}}^2 + (n_S - 2)S_{Y|X_S}^2}{n_{\overline{S}} + n_S - 4} = \frac{(13)(48.274) + (15)(107.62)}{28} = 80.067$$

We also need

$$S_{(\hat{\beta}_{1\overline{SMK}} - \hat{\beta}_{1SMK})}^{2} = S_{p,Y|X}^{2} \left[\frac{1}{(n_{\overline{S}} - 1)S_{X_{\overline{S}}}^{2}} + \frac{1}{(n_{S} - 1)S_{X_{S}}^{2}} \right] = 80.067 \left[\frac{1}{14(0.176)} + \frac{1}{16(0.322)} \right] = 48.04$$

The test statistic is then:
$$T = \frac{\hat{\beta}_{1SMK} - \hat{\beta}_{1SMK}}{S_{(\hat{\beta}_{1SMK} - \hat{\beta}_{1SMK})}} = \frac{26.303 - 20.118}{\sqrt{48.04}} = 0.892$$

The test statistic follows a t distribution with 28 degrees of freedom (df) under H_0 . The P-value is: 0.15 < P <0.25. At α =0.05 we do not reject H_0 ; the slopes for smokers and non-smokers are the same.

$$T = \frac{\hat{\beta}_{0SMK}}{S} = \beta_{0SMK} = \frac{49.312 - 79.255}{\sqrt{583.528}} = -1.24, \quad (28 \text{ df})$$

$$Where S_{(\hat{\beta}_{0\overline{S}MK}}^2 - \hat{\beta}_{0SMK}) = S_{p,Y|X}^2 \left[\frac{1}{n_{\overline{S}}} + \frac{1}{n_S} + \frac{\overline{X_S^2}}{(n_{\overline{S}} - 1)S_{X_S}^2} + \frac{\overline{X_S^2}}{(n_S - 1)S_{X_S}^2} \right]$$

$$= 80.067 \left[\frac{1}{15} + \frac{1}{17} + \frac{3.478^2}{(14)(0.176)} + \frac{3.408^2}{(16)(0.322)} \right] = 583.528$$

P-value: 0.20 <P <0.30

At $\alpha = 0.05$ we do not reject H_0 and conclude that the two intercepts are equal.

d From the above tests, we would conclude that the straight lines for smokers and non-smokers are coincident since both tests failed to reject H_0 .